Knockout of STriatal enriched protein tyrosine phosphatase in mice results in increased ERK1/2 phosphorylation

Child Study Center, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
Synapse (Impact Factor: 2.43). 01/2009; 63(1):69-81. DOI: 10.1002/syn.20608
Source: PubMed

ABSTRACT STriatal Enriched protein tyrosine Phosphatase (STEP) is a brain-specific protein that is thought to play a role in synaptic plasticity. This hypothesis is based on previous findings demonstrating a role for STEP in the regulation of the extracellular signal-regulated kinase1/2 (ERK1/2). We have now generated a STEP knockout mouse and investigated the effect of knocking out STEP in the regulation of ERK1/2 activity. Here, we show that the STEP knockout mice are viable and fertile and have no detectable cytoarchitectural abnormalities in the brain. The homozygous knockout mice lack the expression of all STEP isoforms, whereas the heterozygous mice have reduced STEP protein levels when compared with the wild-type mice. The STEP knockout mice show enhanced phosphorylation of ERK1/2 in the striatum, CA2 region of the hippocampus, as well as central and lateral nuclei of the amygdala. In addition, the cultured neurons from KO mice showed significantly higher levels of pERK1/2 following synaptic stimulation when compared with wild-type controls. These data demonstrate more conclusively the role of STEP in the regulation of ERK1/2 activity.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein tyrosine phosphorylation is a key regulatory process in virtually all aspects of cellular functions. Dysregulation of protein tyrosine phosphorylation is a major cause of human diseases, such as cancers, diabetes, autoimmune disorders, and neurological diseases. Indeed, protein tyrosine phosphorylation-mediated signaling events offer ample therapeutic targets, and drug discovery efforts to date have brought over two dozen kinase inhibitors to the clinic. Accordingly, protein tyrosine phosphatases (PTPs) are considered next-generation drug targets. For instance, PTP1B is a well-known targets of type 2 diabetes and obesity, and recent studies indicate that it is also a promising target for breast cancer. SHP2 is a bona-fide oncoprotein, mutations of which cause juvenile myelomonocytic leukemia, acute myeloid leukemia, and solid tumors. In addition, LYP is strongly associated with type 1 diabetes and many other autoimmune diseases. This review summarizes recent findings on several highly recognized PTP family drug targets, including PTP1B, Src homology phosphotyrosyl phosphatase 2,(SHP2), lymphoid-specific tyrosine phosphatase (LYP), CD45, Fas associated phosphatase-1 (FAP-1), striatal enriched tyrosine phosphatases (STEP), mitogen-activated protein kinase/dual-specificity phosphatase 1 (MKP-1), phosphatases of regenerating liver-1 (PRL), low molecular weight PTPs (LMWPTP), and CDC25. Given that there are over 100 family members, we hope this review will serve as a road map for innovative drug discovery targeting PTPs.
    Acta Pharmacologica Sinica 09/2014; DOI:10.1038/aps.2014.80 · 2.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To stop the progression of Alzheimer's disease in the early stage, it is necessary to identify new therapeutic targets. We examined striatal-enriched phosphatase 61 expression in the brain tissues of 12-month-old APPswe/PSEN1dE9 transgenic mice. Immunohistochemistry showed that al-enriched phosphatase 61 protein expression was significantly increased but phosphorylated N-methyl-D-aspartate receptor 2B levels were significantly decreased in the cortex and hippocampus of APPswe/PSEN1dE9 transgenic mice. Western blotting of a cell model of Alzheimer's disease consisting of amyloid-beta peptide (1-42)-treated C57BL/6 mouse cortical neurons in vitro showed that valeric acid (AP5), an N-methyl-D-aspartate receptor antagonist, significantly inhibited amyloid-beta 1-42-induced increased activity of striatal-enriched phosphatase 61. In addition, the phosphorylation of N-methyl-D-aspartate receptor 2B at Tyr1472 was impaired in amyloid-beta 1-42-treated cortical neurons, but knockdown of striatal-enriched phosphatase 61 enhanced the phosphorylation of N-methyl-D-aspartate receptor 2B. Collectively, these findings indicate that striatal-enriched phosphatase 61 can disturb N-methyl-D-aspartate receptor transport and inhibit the progression of learning and study disturbances induced by Alzheimer's disease. Thus, al-enriched phosphatase 61 may represent a new target for inhibiting the progression of Alzheimer's disease.
    Neural Regeneration Research 07/2013; 8(21):1938-47. DOI:10.3969/j.issn.1673-5374.2013.21.002 · 0.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endoplasmic reticulum (ER) is motile within dendritic spines, but the mechanisms underlying its regulation are poorly understood. To address this issue, we have simultaneously imaged morphology and ER content of dendritic spines in cultured dissociated mouse hippocampal neurons. Over a 10 min period, spines were highly dynamic, with spines both increasing and decreasing in volume. ER was present in approximately 50% of spines and was also highly dynamic, with a net increase over this period of time. Inhibition of the endogenous activation of NMDA receptors resulted in a reduction in ER growth. Conversely, augmentation of the synaptic activation of NMDA receptors, by elimination of striatal-enriched protein tyrosine phosphatase (STEP), resulted in enhanced ER growth. Therefore, NMDA receptors rapidly regulate spine ER dynamics.
    Molecular Brain 08/2014; 7(1):60. DOI:10.1186/s13041-014-0060-3 · 4.35 Impact Factor

Full-text (2 Sources)

Available from
May 20, 2014