Space Flight Calcium: Implications for Astronaut Health, Spacecraft Operations, and Earth

Human Health and Performance Directorate, NASA Lyndon B. Johnson Space Center, Houston, TX 77058, USA. .
Nutrients (Impact Factor: 3.15). 12/2012; 4(12):2047-68. DOI: 10.3390/nu4122047
Source: PubMed

ABSTRACT The space flight environment is known to induce bone loss and, subsequently, calcium loss. The longer the mission, generally the more bone and calcium are lost. This review provides a history of bone and calcium studies related to space flight and highlights issues related to calcium excretion that the space program must consider so that urine can be recycled. It also discusses a novel technique using natural stable isotopes of calcium that will be helpful in the future to determine calcium and bone balance during space flight.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Calcium and bone metabolism remain key concerns for space travelers, and ground-based models of space flight have provided a vast literature to complement the smaller set of reports from flight studies. Increased bone resorption and largely unchanged bone formation result in the loss of calcium and bone mineral during space flight, which alters the endocrine regulation of calcium metabolism. Physical, pharmacologic, and nutritional means have been used to counteract these changes. In 2012, heavy resistance exercise plus good nutritional and vitamin D status were demonstrated to reduce loss of bone mineral density on long-duration International Space Station missions. Uncertainty continues to exist, however, as to whether the bone is as strong after flight as it was before flight and whether nutritional and exercise prescriptions can be optimized during space flight. Findings from these studies not only will help future space explorers but also will broaden our understanding of the regulation of bone and calcium homeostasis on Earth. Expected final online publication date for the Annual Review of Nutrition Volume 34 is July 17, 2014. Please see for revised estimates.
    Annual Review of Nutrition 06/2014; DOI:10.1146/annurev-nutr-071813-105440 · 10.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Eccentric muscle actions are important to the development of muscle mass and strength and may affect bone mineral density (BMD). This study's purpose was to determine the relative effectiveness of five different eccentric:concentric load ratios to increase musculoskeletal parameters during early adaptations to resistance training. Forty male subjects performed a supine leg press and calf press training program 3 days week(-1) for 8 weeks. Subjects were matched for pre-training leg press 1-repetition maximum strength (1-RM) and randomly assigned to one of five training groups. Concentric training load (% 1-RM) was constant across groups, but within groups, eccentric load was 0, 33, 66, 100, or 138 % of concentric load. Muscle mass (dual energy X-ray absorptiometry; DXA), strength (1-RM), and BMD (DXA) were measured pre- and post-training. Markers of bone metabolism were assessed pre-, mid- and post-training. The increase in leg press 1-RM in the 138 % group (20 +/- A 4 %) was significantly greater (P < 0.05) than the 0 % (8 +/- A 3 %), 33 % (8 +/- A 5 %) and 66 % (8 +/- A 4 %) groups, but not the 100 % group (13 +/- A 6 %; P = 0.15). All groups, except the 0 % group, increased calf press 1-RM (P < 0.05). Leg lean mass and greater trochanter BMD were increased only in the 138 % group (P < 0.05). Early-phase adaptations to eccentric overload training include increases in muscle mass and site-specific increases in BMD and muscle strength which are not present or are less with traditional and eccentric underload training. Eccentric overload provides a robust musculoskeletal stimulus that may benefit bedridden patients, individuals recovering from injury or illness, and astronauts during spaceflight.
    Arbeitsphysiologie 07/2014; 114(11). DOI:10.1007/s00421-014-2951-5 · 2.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to directly assess sex differences in bone loss, bone biochemistry, and renal stone risk in bed rest. Bed rest simulates some spaceflight effects on human physiology and can be used to address the potential existence of sex-specific effects on bone metabolism and renal stone risk in space. We combined data from the control subjects in five head-down-tilt bed rest studies (combined n = 50 men, 24 women) of differing durations (14–90 days). All subjects were healthy volunteers. Mean age was 35 ± 9 years for women and 33 ± 8 years for men. The main outcome measures were bone density and biochemistry, and renal stone risk chemistry. Before bed rest began, men had higher bone mineral density and content (P < 0.001), and excreted more biomarkers of bone resorption and calcium per day than did women (P < 0.05). These differences remained during bed rest. A number of urine chemistry analytes increased (e.g., calcium) or decreased (e.g., sodium, citrate, and urine volume) significantly for men and women during bed rest. These changes may predispose men to higher stone risk. Men and women do not have substantially different responses to the skeletal unloading of bed rest.
    08/2014; 2(8). DOI:10.14814/phy2.12119

Full-text (2 Sources)

Available from
Jun 5, 2014