Article

Antisickling activity of anthocyanins from Bombax pentadrum, Ficus capensis and Ziziphus mucronata: photodegradation effect.

Département de Chimie, Faculté des Sciences B.P. 190 Kinshasa XI, Université de Kinshasa, Democratic Republic of Congo.
Journal of Ethnopharmacology (Impact Factor: 2.94). 10/2008; 120(3):413-8. DOI: 10.1016/j.jep.2008.09.012
Source: PubMed

ABSTRACT A survey was conducted in Lubumbashi city (Democratic Republic of Congo) in order to: (a) identify medicinal plants used by traditional healers in the management of sickle cell anaemia, (b) verify their antisickling activity in vitro, (c) determine the most active plants, and (d) verify if anthocyanins are responsible of the bioactivity and study their photodegradation effect.
The Emmel test was used in vitro, for the antisickling activity assays of aqueous and ethanolic extracts of different parts of these plants when a UV lamp and solar irradiations were used to induce the photodegradation effect.
The survey revealed that 13 medicinal plants are used in the treatment of drepanocytosis among which 12 plants exhibited the in vitro antisickling activity for at least one of the used parts or extracts. These plants are Bombax pentadrum, Bougainvillea sp., Byarsocarpus orientalis, Dalberigia bochmintaub, Diplorrhynbchus condolocarpus, Euphorbia heterophylla, Ficus capensis, Harungana madagascariensis, Parinari mobola, Pothmania witfchidii, Syzygium guineense, Temnocalys verdickii and Ziziphus mucronata of which four (Bombax pentadrum, Ficus capensis, Parinari mobola and Ziziphus mucronata) revealed a high antisickling activity. The biological activity of three of these plants is due to anthocyanins. The antisickling activity and photodegradation effect of anthocyanins extracts were studied and minimal concentration of normalization determined. The biological activity of Bombax pentadrum anthocyanins decreased to half of its value after 40 min of irradiation under a lamp emitting at a wavelength of 365 nm and after about 10h of solar irradiation. For Ziziphus mucronata and Ficus capensis, the antisickling activity decreased to half after about 6h under a lamp exposition and after about 50h of solar exposition.
In vitro Antisickling activity justifies the use of these plants by traditional healers and this activity would be due to anthocyanins. But these natural pigments are instable towards UV-Visible irradiations. The conservation of these plants should then be performed in a shield from the sun radiation.

0 Bookmarks
 · 
100 Views
  • Source
    European Journal of Medicinal Plants. 01/2014; 4(10):1251-1267.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aims: To evaluate the antisickling and radical scavenging activities and acute toxicity of indigenous nutritive formula Drepanoalpha®, produced through a bio-guided based plant selection. Study Design: Drepanoalpha® extracts, Antisickling activity by Emmel test, Antioxidant activity by 1,1-diphenyl-2-picrylhydrazyl bleaching methods; acute toxicity on rats, determination of biological and haematological parameters. Place and Duration of Study: Science Faculty University of Kinshasa, between January 2013 and February 2014. Methodology: The antisickling and antioxidant activities of Drepanoalpha® were determined using Emmel and the 1,1-diphenyl-2-picrylhydrazyl bleaching methods respectively. Acute oral toxicity test was performed to determine the LD50. Liver and kidney functions, the hematological and histopathological examinations were assessed using standard techniques. Results: Obtained results revealed that Drepanoalpha® possessesinteresting in vitro antisickling and antioxidant activities as revealed by the observed normal biconcave form of sickle erythrocyte (normalization rate >80%) and the radical scavenging activity (ED50= 0.604 ± 0.028 μg/mL). Acute toxicity assessment revealed that the medium lethal dose (LD50) is higher than 4000 mg/kg. Drepanoalpha® significantly increases the values of WBC, RBC, Hb, HCT, PLT, IDR-CV and PCT. Furthermore, this polyherbal formula significantly decreases the values of IDR-SD, P-RGC, AST and ALT (p<0.05). Both the control and treated groups displayed comparable non altered histological architecture of the liver cells. Discussion: The mean values of biochemical markers and hematological markers of treated rats revealed that Drépanoalpha® is potentially safe indicating non-toxic effect of the phytomedicine on immune cells and blood clotting factors. Moreover, this poly-herbal formulation increases the hemoglobin rate in the all treated rats (500-4000 mg/kg bodyweight) and preserves the histological architecture of the liver cells. Conclusion: Drepanoalpha® may increase weight gain, promote erythropoiesis and thrombopoeisis in sicklers patients. This phytomedicine could be used in the treatment of all form of anemia and may also prevent bile duct obstruction or intra-hepatic cholestasis. The results can form the basis for clinical trials in humans.
    European Journal of Medicinal Plants. 07/2014; 4(10):1251-1267.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aims: To evaluate the antisickling and radical scavenging activities and acute toxicity of indigenous nutritive formula Drepanoalpha®, produced through a bio-guided based plant selection. Study Design: Drepanoalpha® extracts, Antisickling activity by Emmel test, Antioxidant activity by 1,1-diphenyl-2-picrylhydrazyl bleaching methods; acute toxicity on rats, determination of biological and haematological parameters. Place and Duration of Study: Science Faculty University of Kinshasa, between January 2013 and February 2014. Methodology: The antisickling and antioxidant activities of Drepanoalpha® were determined using Emmel and the 1,1-diphenyl-2-picrylhydrazyl bleaching methodsrespectively. Acute oral toxicity test was performed to determine the LD50. Liver and kidney functions, the hematological and histopathological examinations were assessed using standard techniques. Results: Obtained results revealed that Drepanoalpha® possessesinteresting in vitro antisickling and antioxidant activities as revealed by the observed normal biconcave form of sickle erythrocyte (normalization rate >80%) and the radical scavenging activity (ED50= 0.604 ± 0.028 μg/mL). Acute toxicity assessment revealed that the medium lethal dose (LD50) is higher than 4000 mg/kg. Drepanoalpha® significantly increases the values of WBC, RBC, Hb, HCT, PLT, IDR-CV and PCT. Furthermore, this polyherbal formula significantly decreases the values of IDR-SD, P-RGC, AST and ALT (p<0.05). Both the control and treated groups displayed comparable non altered histological architecture of the liver cells. Discussion: The mean values of biochemical markers and hematological markers of treated rats revealed that Drépanoalpha® is potentially safe indicating non-toxic effect of the phytomedicine on immune cells and blood clotting factors. Moreover, this poly-herbal formulation increases the hemoglobin rate in the all treated rats (500-4000 mg/kg bodyweight) and preserves the histological architecture of the liver cells. Conclusion: Drepanoalpha® may increase weight gain, promote erythropoiesis and thrombopoeisis in sicklers patients. This phytomedicine could be used in the treatment of all form of anemia and may also prevent bile duct obstruction or intra-hepatic cholestasis. The results can form the basis for clinical trials in humans.

Full-text

Download
51 Downloads
Available from
Jun 18, 2014