Article

Proteomic Approaches to the Discovery of Cancer Biomarkers for Early Detection and Personalized Medicine.

Department of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tokyo, Japan.
Japanese Journal of Clinical Oncology (Impact Factor: 1.75). 12/2012; DOI: 10.1093/jjco/hys200
Source: PubMed

ABSTRACT Cancer biomarkers for the early detection of malignancies and selection of therapeutic strategies have been requested in the clinical field. Accurate and informative cancer biomarkers hold significant promise for improvements in the early detection of disease and in the selection of the most effective therapeutic strategies. Recently, significant progress in the comprehensive analysis of the human genome, epigenome, transcriptome, proteome and metabolome has led to revolutionary changes in the discovery of cancer biomarkers. The Human Proteome Organization has launched a global Human Proteome Project to map the entire human protein set. The Human Proteome Project research group has focused on three working proteomic pillars-mass spectrometry-based, antibody-based and knowledge-based proteomics-and each of these technologies is advancing rapidly. In this review, we introduce the proteomic platforms that are currently being used for cancer biomarker discovery, and describe examples of novel cancer biomarkers that were identified with each proteomic technology.

1 Bookmark
 · 
1,591 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hypobaric hypoxia causes complex changes in the expression of genes, including stress related genes and corresponding proteins that are necessary to maintain homeostasis. Whereas most prior studies focused on single proteins, newer methods allowing the simultaneous study of many proteins could lead to a better understanding of complex and dynamic changes that occur during the hypobaric hypoxia.
    PLoS ONE 05/2014; 9(5):e98027. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pulmonary hypertension (PH) is a fatal syndrome that arises from a multifactorial and complex background, is characterized by increased pulmonary vascular resistance and right heart afterload, and often leads to cor pulmonale. Over the past decades, remarkable progress has been made in reducing patient symptoms and delaying the progression of the disease. Unfortunately, PH remains a disease with no cure. The substantial heterogeneity of PH continues to be a major limitation to the development of newer and more efficacious therapies. New advances in our understanding of the biological pathways leading to such a complex pathogenesis will require the identification of the important proteins and protein networks that differ between a healthy lung (or right ventricle) and a remodeled lung in an individual with PH. In this article, we present the case for the increased use of proteomics-the study of proteins and protein networks- as a discovery tool for key proteins and protein networks operational in the PH lung. We review recent applications of proteomics in PH, and summarize the biological pathways identified. Finally, we attempt to presage what the future will bring with regard to proteomics in PH and offer our perspectives on the prospects of developing personalized proteomics and custom-tailored therapies.
    PROTEOMICS - CLINICAL APPLICATIONS 11/2014; · 1.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study aimed to investigate the differential expression of plasma proteins in patients suffering from high-altitude pulmonary edema (HAPE) at different phases. A complete proteomic analysis was performed using two-dimensional gel electrophoresis followed by mass spectrometry in three patients with HAPE at the acute stage and recovery phase. Comparisons between the expression patterns of the patients with HAPE at the two different phases led to the identification of eight protein spots with a >1.5-fold difference in expression between the acute and recovery phases. These differentially expressed proteins were apolipoproteins, serum amyloid P component, complement components and others. Apolipoprotein A-I (Apo A-I), serum amyloid P component and fibrinogen were overexpressed in the patients with HAPE in the acute stage compared with their expression levels in the recovery phase. However, Apo A-IV and antithrombin-III were overexpressed in the patients with HAPE in the recovery phase compared with their expression levels in the acute stage. The results indicate that the differential plasma proteome in patients with HAPE may be associated with the occurrence of HAPE, and the expression changes of Apo A-I and A-IV may offer further understanding of HAPE to aid its prognosis, diagnosis and treatment.
    Experimental and therapeutic medicine 05/2014; 7(5):1160-1166. · 0.94 Impact Factor

Full-text

Download
355 Downloads
Available from
May 23, 2014