Proteomic Approaches to the Discovery of Cancer Biomarkers for Early Detection and Personalized Medicine.

Department of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tokyo, Japan.
Japanese Journal of Clinical Oncology (Impact Factor: 1.9). 12/2012; DOI: 10.1093/jjco/hys200
Source: PubMed

ABSTRACT Cancer biomarkers for the early detection of malignancies and selection of therapeutic strategies have been requested in the clinical field. Accurate and informative cancer biomarkers hold significant promise for improvements in the early detection of disease and in the selection of the most effective therapeutic strategies. Recently, significant progress in the comprehensive analysis of the human genome, epigenome, transcriptome, proteome and metabolome has led to revolutionary changes in the discovery of cancer biomarkers. The Human Proteome Organization has launched a global Human Proteome Project to map the entire human protein set. The Human Proteome Project research group has focused on three working proteomic pillars-mass spectrometry-based, antibody-based and knowledge-based proteomics-and each of these technologies is advancing rapidly. In this review, we introduce the proteomic platforms that are currently being used for cancer biomarker discovery, and describe examples of novel cancer biomarkers that were identified with each proteomic technology.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: Early science fiction envisioned the future of drug delivery as targeted micron-scale submarines and 'Cyborg' body parts. Here we describe the progression of the field toward technologies that are now beginning to capture aspects of this early vision. Specifically, we focus on the two most prominent types of systems in drug delivery - the intravascular micro/nano drug carriers for delivery to the site of pathology and drug-loaded implantable devices that facilitate release with the pre-defined kinetics or in response to a specific cue. We discuss the unmet clinical needs that inspire these designs, the physiological factors that pose difficult challenges for their realization, and viable technologies that promise robust solutions. We also offer a perspective on where drug delivery may be in the next 50 years based on expected advances in material engineering and in the context of future diagnostics. Keywords: drug delivery, drug carriers, nanotechnology, controlled release implants, physiological barriers, pharmacokinetics, translational medicine.
    Molecular Pharmaceutics 08/2013; · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Accumulating evidence suggests parasympathetic dysfunction and elevated inflammation as underlying processes in multiple peripheral and neurological diseases. Acetylcholine, the main parasympathetic neurotransmitter and inflammation regulator, is hydrolyzed by the two closely homologous enzymes, acetylcholinesterase and butyrylcholinesterase (AChE and BChE, respectively), which are also expressed in the serum. Here, we consider the potential value of both enzymes as possible biomarkers in diseases associated with parasympathetic malfunctioning. We cover the modulations of cholinesterase activities in inflammation-related events as well as by cholinesterase-targeted microRNAs. We further discuss epigenetic control over cholinesterase gene expression and the impact of single-nucleotide polymorphisms on the corresponding physiological and pathological processes. In particular, we focus on measurements of circulation cholinesterases as a readily quantifiable readout for changes in the sympathetic/parasympathetic balance and the implications of changes in this readout in health and disease. Taken together, this cumulative know-how calls for expanding the use of cholinesterase activity measurements for both basic research and as a clinical assessment tool.
    Journal of Molecular Neuroscience 11/2013; · 2.89 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The traditional "one treatment fits all" paradigm disregards the heterogeneity between cancer patients, and within a particular tumor, thus limit the success of common treatments. Moreover, current treatment lacks specificity and therefore most of the anticancer drugs induce severe adverse effects. Personalized medicine aims to individualize therapeutic interventions, based on, the growing knowledge of the human multiple '-oms' (e.g. genome, epigenome, transcriptome, proteome and metabolome), which has led to the discovery of various biomarkers that can be used to detect early-stage cancers and predict tumor progression, drug response, and clinical outcome. Nanomedicine, the application of nanotechnology to healthcare, holds great promise for revolutionizing disease management such as drug delivery, molecular imaging, reduced adverse effects and the ability to contain both therapeutic and diagnostic modalities simultaneously termed theranostics. Personalized nanomedicine has the power of combining nanomedicine with clinical and molecular biomarkers ("OMICS" data) achieving improve prognosis and disease management as well as individualized drug selection and dosage profiling to ensure maximum efficacy and safety. Tumor's heterogeneity sets a countless challenge for future personalized therapy in cancer, however the use of multi-parameter 'omic's data for precise molecular biomarkers recognition together with versatile drug delivery nanocarriers, which could target concomitantly and specifically tumor cells subpopulations might heralds a brighter future for personalized cancer management. In this review we presents the current leading technologies available of personalized oncology. We discusses the immense potential of combining two branches of technology, nanomedicine and high throughput OMICS technologies to pave the way towards cancer personalized medicine.
    Cancer letters 08/2013; · 5.02 Impact Factor


Available from
May 23, 2014