Multiplexed Gene Expression and Fusion Transcript Analysis to Detect ALK Fusions in Lung Cancer

Pfizer Oncology, San Diego, California.
The Journal of molecular diagnostics: JMD (Impact Factor: 4.85). 12/2012; 15(1). DOI: 10.1016/j.jmoldx.2012.08.006
Source: PubMed

ABSTRACT Anaplastic lymphoma kinase gene (ALK) fusions have been identified in approximately 5% of non-small-cell lung carcinomas (NSCLCs) and define a distinct subpopulation of patients with lung cancer who are highly responsive to ALK kinase inhibitors, such as crizotinib. Because of this profound therapeutic implication, the latest National Comprehensive Cancer Network Clinical Practice Guidelines in Oncology recommend upfront ALK screening for all patients with NSCLC. The Food and Drug Administration-approved companion diagnostic test (ie, fluorescence in situ hybridization) for identification of ALK-positive patients, however, is complex and has considerable limitations in terms of cost and throughput, making it difficult to screen many patients. To explore alternative screening modalities for detecting ALK fusions, we designed a combination of two transcript-based assays to detect for presence or absence of ALK fusions using NanoString's nCounter technology. By using this combined gene expression and ALK fusion detection strategy, we developed a multiplexed assay with a quantitative scoring modality that is highly sensitive, reproducible, and capable of detecting low-abundant ALK fusion transcripts, even in samples with a low tumor cell content. In 66 archival NSCLC samples, our results were highly concordant to prior results obtained by fluorescence in situ hybridization and IHC. Our assay offers a cost-effective, easy-to-perform, high-throughput, and FFPE-compatible screening alternative for detection of ALK fusions.

Download full-text


Available from: Mao Mao, May 01, 2014
1 Follower
115 Reads
  • Source
    • "ALK detection by FISH is an expensive, slow, and cumbersome detection method [102,110,112,113]. ALK detection by IHC will likely replace FISH, as it is easier to implement, costs less, requires less expertise to perform, and has a rapid turn-around time [116,156]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The anaplastic lymphoma tyrosine kinase (ALK) gene was first described as a driver mutation in anaplastic non-Hodgkin's lymphoma. Dysregulated ALK expression is now an identified driver mutation in nearly twenty different human malignancies, including 4-9% of non-small cell lung cancers (NSCLC). The tyrosine kinase inhibitor crizotinib is more effective than standard chemotherapeutic agents in treating ALK positive NSCLC, making molecular diagnostic testing for dysregulated ALK expression a necessary step in identifying optimal treatment modalities. Here we review ALKmediated signal transduction pathways and compare the molecular protocols used to identify dysregulated ALK expression in NSCLC. We also discuss the use of crizotinib and second generation ALK tyrosine kinase inhibitors in the treatment of ALK positive NSCLC, and the known mechanisms of crizotinib resistance in NSCLC.
    Genes & cancer 04/2014; 5(1-2):1-14.
  • Source
    • "Reporter counts were collected using the nSolver analysis software version 1 in NanoString, normalized, and analyzed as described below. A detailed description of the assay is given elsewhere36. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Rhabdomyosarcoma (RMS) is the most commonly occurring type of soft tissue tumor in children. However, it is rare in adults, and therefore, very little is known about the most appropriate treatment strategy for adult RMS patients. We performed genomic analysis of RMS cells derived from a 27-year-old male patient whose disease was refractory to treatment. A peritoneal seeding nodule from the primary tumor, pleural metastases, malignant pleural effusion, and ascites obtained during disease progression, were analyzed. Whole exome sequencing revealed 23 candidate variants, and 10 of 23 mutations were validated by Sanger sequencing. Three of 10 mutations were present in both primary and metastatic tumors, and 3 mutations were detected only in metastatic specimens. Comparative genomic hybridization array analysis revealed prominent amplification in the 12q13-14 region, and more specifically, the CDK4 proto-oncogene was highly amplified. ALK overexpression was observed at both protein and RNA levels. However, an ALK fusion assay using NanoString technology failed to show any ALK rearrangements. Little genetic heterogeneity was observed between primary and metastatic RMS cells. We propose that CDK4, located at 12q14, is a potential target for drug development for RMS treatment.
    Scientific Reports 01/2014; 4:3623. DOI:10.1038/srep03623 · 5.58 Impact Factor
  • Source
    • "These different types of ALK rearrangements result in the expression of stabilized chimeric ALK fusion-proteins with constitutive kinase activity and oncogenic properties [3,5,9,10]. In particular, ALK fusion proteins constitutively transmit signals via PI3K/AKT/mTOR and RAS/RAF/MEK/MAPK signaling pathways, leading to enhanced cell survival and proliferation [3,11]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Anaplastic lymphoma kinase-positive non-small cell lung carcinoma patients are generally highly responsive to the dual anaplastic lymphoma kinase and MET tyrosine kinase inhibitor crizotinib. However, they eventually acquire resistance to this drug, preventing the anaplastic lymphoma kinase inhibitors from having a prolonged beneficial effect. The molecular mechanisms responsible for crizotinib resistance are beginning to emerge, e.g., in some anaplastic lymphoma kinase-positive non-small cell lung carcinomas the development of secondary mutations in this gene has been described. However, the events behind crizotinib-resistance currently remain largely uncharacterized. Thus, we report on an anaplastic lymphoma kinase-positive non-small cell lung carcinoma patient with concomitant occurrence of epidermal growth factor receptor and V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog mutations upon development of crizotinib-resistance. A 61-year-old Caucasian never-smoking male was diagnosed with anaplastic lymphoma kinase -positive pulmonary adenocarcinoma, stage T4N3M1b. Treatment with crizotinib initially resulted in complete objective response in the thorax and partial response in the abdomen, but after 8 months of therapy the patient acquired resistance and progressed. Biopsies from new metastases revealed development of epidermal growth factor receptor and V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog mutations concomitant with the original anaplastic lymphoma kinase gene rearrangement and without signs of anaplastic lymphoma kinase fusion gene amplification or secondary anaplastic lymphoma kinase mutations. To our knowledge, this is the first report of an anaplastic lymphoma kinase-positive pulmonary adenocarcinoma, which upon emergence of crizotinib resistance acquired 2 new somatic mutations in the epidermal growth factor receptor and V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog genes, respectively, concomitant with the original anaplastic lymphoma kinase rearrangement. Thus, these 3 driver mutations, usually considered mutually exclusive, may coexist in advanced non-small cell lung carcinoma that becomes resistant to crizotinib, presumably because heterogeneous tumor clones utilize epidermal growth factor receptor and/or V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog signaling to circumvent the inhibition of anaplastic lymphoma kinase-mediated signaling by crizotinib. The identification of new targetable somatic mutations by tumor re-biopsy may help clarify the mechanism behind the development of the acquired crizotinib resistance and pave the way for combined strategies involving multiple targeted therapies.
    BMC Research Notes 11/2013; 6(1):489. DOI:10.1186/1756-0500-6-489
Show more