Article

The receptor PD-1 controls follicular regulatory T cells in the lymph nodes and blood

1] Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA. [2] Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.
Nature Immunology (Impact Factor: 24.97). 12/2012; 14(2). DOI: 10.1038/ni.2496
Source: PubMed

ABSTRACT CD4(+)CXCR5(+)Foxp3(+) follicular regulatory T cells (T(FR) cells) inhibit humoral immunity mediated by CD4(+)CXCR5(+)Foxp3(-) follicular helper T cells (T(FH) cells). Although the inhibitory receptor PD-1 is expressed by both cell types, its role in the differentiation of T(FR) cells is unknown. Here we found that mice deficient in PD-1 and its ligand PD-L1 had a greater abundance of T(FR) cells in the lymph nodes and that those T(FR) cells had enhanced suppressive ability. We also found substantial populations of T(FR) cells in mouse blood and demonstrated that T(FR) cells in the blood homed to lymph nodes and potently inhibited T(FH) cells in vivo. T(FR) cells in the blood required signaling via the costimulatory receptors CD28 and ICOS but were inhibited by PD-1 and PD-L1. Our findings demonstrate mechanisms by which the PD-1 pathway regulates antibody production and help reconcile inconsistencies surrounding the role of this pathway in humoral immunity.

Download full-text

Full-text

Available from: Christopher V Carman, Aug 05, 2015
2 Followers
 · 
168 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chronic infectious diseases such as HIV, HBV, and HCV, among others, cause severe morbidity and mortality globally. Progressive decline in CD8 functionality, survival, and proliferative potential-a phenomenon referred to as CD8 exhaustion-is believed to be responsible for poor pathogen control in chronic infectious diseases. While the role of negative inhibitory receptors such as PD-1 in augmenting CD8 exhaustion has been extensively studied, the role of positive costimulatory receptors remains poorly understood. In this review, we discuss how one such costimulatory pathway, CD40-CD40L, regulates CD8 dysfunction and rescue. While the significance of this pathway has been extensively investigated in models of autoimmunity, acute infectious diseases, and tumor models, the role played by CD40-CD40L in regulating CD8 exhaustion in chronic infectious diseases is just beginning to be understood. Considering that monotherapy with blocking antibodies targeting inhibitory PD-1-PD-L1 pathway is only partially effective at ameliorating CD8 exhaustion and that humanized CD40 agonist antibodies are currently available, a better understanding of the role of the CD40-CD40L pathway in chronic infectious diseases will pave the way for the development of more robust immunotherapeutic and prophylactic vaccination strategies.
    Critical Reviews in Immunology 01/2013; 33(4):361-78. DOI:10.1615/CritRevImmunol.2013007444 · 3.89 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: CD4(+) T helper (Th) cells play an instrumental role in orchestrating adaptive immune responses to invading pathogens through their ability to differentiate into specialized effector subsets. Part of this customized response requires the development of T follicular helper (Tfh) cells, which provide help to B cells for the generation of germinal centers (GCs) and long-term protective humoral responses. Although initially viewed as terminally differentiated, we now recognize that Th cell subsets, including Tfh cells, display substantial flexibility and overlap in their characteristics. In this review, we highlight advances in our understanding of Tfh cell development, cytokine production, and the potential plasticity that allows Tfh cells to possess characteristics of other effector Th cell populations.
    Trends in Immunology 02/2013; 34(5). DOI:10.1016/j.it.2013.01.001 · 12.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The majority of HIV-infected individuals fail to produce protective antibodies and have diminished responses to new immunizations. We report here that even though there is an expansion of follicular helper T (TFH) cells in HIV-infected individuals, the cells are unable to provide adequate B cell help. We found a higher frequency of programmed cell death ligand 1 (PD-L1)+ germinal center B cells from lymph nodes of HIV-infected individuals suggesting a potential role for PD-1-PD-L1 interaction in regulating TFH cell function. In fact, we show that engagement of PD-1 on TFH cells leads to a reduction in cell proliferation, activation, inducible T-cell co-stimulator (ICOS) expression and interleukin-21 (IL-21) cytokine secretion. Blocking PD-1 signaling enhances HIV-specific immunoglobulin production in vitro. We further show that at least part of this defect involves IL-21, as addition of this cytokine rescues antibody responses and plasma cell generation in vitro. Our results suggest that deregulation of TFH cell-mediated B cell help diminishes B cell responses during HIV infection and may be related to PD-1 triggering on TFH cells. These results demonstrate a role for TFH cell impairment in HIV pathogenesis and suggest that enhancing their function could have a major impact on the outcome and control of HIV infection, preventing future infections and improving immune responses to vaccinations.
    Nature medicine 03/2013; 19(4). DOI:10.1038/nm.3109 · 28.05 Impact Factor
Show more