MiRNAs regulate methionine adenosyltransferase 1A expression in hepatocellular carcinoma

The Journal of clinical investigation (Impact Factor: 13.22). 12/2012; 123(1). DOI: 10.1172/JCI63861
Source: PubMed


MicroRNAs (miRNAs) and methionine adenosyltransferase 1A (MAT1A) are dysregulated in hepatocellular carcinoma (HCC), and reduced MAT1A expression correlates with worse HCC prognosis. Expression of miR-664, miR-485-3p, and miR-495, potential regulatory miRNAs of MAT1A, is increased in HCC. Knockdown of these miRNAs individually in Hep3B and HepG2 cells induced MAT1A expression, reduced growth, and increased apoptosis, while combined knockdown exerted additional effects on all parameters. Subcutaneous and intraparenchymal injection of Hep3B cells stably overexpressing each of this trio of miRNAs promoted tumorigenesis and metastasis in mice. Treatment with miRNA-664 (miR-664), miR-485-3p, and miR-495 siRNAs reduced tumor growth, invasion, and metastasis in an orthotopic liver cancer model. Blocking MAT1A induction significantly reduced the antitumorigenic effect of miR-495 siRNA, whereas maintaining MAT1A expression prevented miRNA-mediated enhancement of growth and metastasis. Knockdown of these miRNAs increased total and nuclear level of MAT1A protein, global CpG methylation, lin-28 homolog B (Caenorhabditis elegans) (LIN28B) promoter methylation, and reduced LIN28B expression. The opposite occurred with forced expression of these miRNAs. In conclusion, upregulation of miR-664, miR-485-3p, and miR-495 contributes to lower MAT1A expression in HCC, and enhanced tumorigenesis may provide potential targets for HCC therapy.

12 Reads
  • Source
    • "The results showed that miR-664 was up-regulated in the 43 T-ALL children samples and its predicted target PLP2 was down-regulated in the 49 children with T-ALL. Increased expression of miR-664 has been found in hepatocellular carcinoma [17]. The relationship between miR-664 and T-ALL has never been reported before. "
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRNAs) play important roles in the pathogenesis of many types of cancers by negatively regulating gene expression at posttranscriptional level. However, the role of microRNAs in leukaemia, particularly T-cell acute lymphoblastic leukaemia(T-ALL), has remained elusive. Here, we identified miR-664 and its predicted target gene PLP2 were differentially expressed in T-ALL using bioinformatics methods. In T-ALL cell lines, CCK-8 proliferation assay indicated that the cell proliferation was promoted by miR-664, while miR-664 inhibitor could significantly inhibited the proliferation. Moreover, migration and invasion assay showed that overexpression of miR-664 could significantly promoted the migration and invasion of T-ALL cells, whereas miR-664 inhibitor could reduce cell migration and invasion. luciferase assays confirmed that miR-664 directly bound to the 3'untranslated region of PLP2, and western blotting showed that miR-664 suppressed the expression of PLP2 at the protein levels. This study indicated that miR-664 negatively regulates PLP2 and promotes proliferation and invasion of T-ALL cell lines. Thus, miR-664 may represent a potential therapeutic target for T-ALL intervention. Copyright © 2015. Published by Elsevier Inc.
    Biochemical and Biophysical Research Communications 02/2015; 459(2). DOI:10.1016/j.bbrc.2015.02.116 · 2.30 Impact Factor
  • Source
    • "We did not notice any significant cancer biology related publications for miR-561. miR-664 has a potential tumor suppressive activity in hepatocellular carcinoma and has been documented to downregulate methionine adenosyltransferase 1A (MAT1A) [29]. miR-548 is implied in regulating pancreatic cancer progression and downregulation of low-density lipoprotein receptor-related protein (LRP1B), in thyroid cancer [30, 31]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background N-Myc Interactor is an inducible protein whose expression is compromised in advanced stage breast cancer. Downregulation of NMI, a gatekeeper of epithelial phenotype, in breast tumors promotes mesenchymal, invasive and metastatic phenotype of the cancer cells. Thus the mechanisms that regulate expression of NMI are of potential interest for understanding the etiology of breast tumor progression and metastasis. Method Web based prediction algorithms were used to identify miRNAs that potentially target the NMI transcript. Luciferase reporter assays and western blot analysis were used to confirm the ability of miR-29 to target NMI. Quantitive-RT-PCRs were used to examine levels of miR29 and NMI from cell line and patient specimen derived RNA. The functional impact of miR-29 on EMT phenotype was evaluated using transwell migration as well as monitoring 3D matrigel growth morphology. Anti-miRs were used to examine effects of reducing miR-29 levels from cells. Western blots were used to examine changes in GSK3β phosphorylation status. The impact on molecular attributes of EMT was evaluated using immunocytochemistry, qRT-PCRs as well as Western blot analyses. Results Invasive, mesenchymal-like breast cancer cell lines showed increased levels of miR-29. Introduction of miR-29 into breast cancer cells (with robust level of NMI) resulted in decreased NMI expression and increased invasion, whereas treatment of cells with high miR-29 and low NMI levels with miR-29 antagonists increased NMI expression and decreased invasion. Assessment of 2D and 3D growth morphologies revealed an EMT promoting effect of miR-29. Analysis of mRNA of NMI and miR-29 from patient derived breast cancer tumors showed a strong, inverse relationship between the expression of NMI and the miR-29. Our studies also revealed that in the absence of NMI, miR-29 expression is upregulated due to unrestricted Wnt/β-catenin signaling resulting from inactivation of GSK3β. Conclusion Aberrant miR-29 expression may account for reduced NMI expression in breast tumors and mesenchymal phenotype of cancer cells that promotes invasive growth. Reduction in NMI levels has a feed-forward impact on miR-29 levels.
    Molecular Cancer 08/2014; 13(1):200. DOI:10.1186/1476-4598-13-200 · 4.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The role of microRNAs in association with Mycobacterium tuberculosis (MTB) infection and the immunology regulated by microRNAs upon MTB infection have not been fully unravelled. We examined the microRNA profiles of THP-1 macrophages upon the MTB infection of Beijing/W and non-Beijing/W clinical strains. We also studied the microRNA profiles of the host macrophages by microarray in a small cohort with active MTB disease, latent infection (LTBI), and from healthy controls. The results revealed that 14 microRNAs differentiated infections of Beijing/W from non-Beijing/W strains (P<0.05). A unique signature of 11 microRNAs in human macrophages was identified to differentiate active MTB disease from LTBI and healthy controls. Pathway analyses of these differentially expressed miRNAs suggest that the immune-regulatory interactions involving TGF-β signalling pathway take part in the dysregulation of critical TB processes in the macrophages, resulting in active expression of both cell communication and signalling transduction systems. We showed for the first time that the Beijing/W TB strains repressed a number of miRNAs expressions which may reflect their virulence characteristics in altering the host response. The unique signatures of 11 microRNAs may deserve further evaluation as candidates for biomarkers in the diagnosis of MTB and Beijing/W infections.
    PLoS ONE 06/2015; 10(6):e0126018. DOI:10.1371/journal.pone.0126018 · 3.23 Impact Factor
Show more


12 Reads
Available from