Gene therapy prospects - Intranasal delivery of therapeutic genes

Department of Cell Biology, Cancer Center, Warsaw, Poland.
Advances in Clinical and Experimental Medicine (Impact Factor: 1.1). 11/2011; 21(4):525-34.
Source: PubMed


Gene therapy is recognized to be a novel method for the treatment of various disorders. Gene therapy strategies involve gene manipulation on broad biological processes responsible for the spreading of diseases. Cancer, monogenic diseases, vascular and infectious diseases are the main targets of gene therapy. In order to obtain valuable experimental and clinical results, sufficient gene transfer methods are required. Therapeutic genes can be administered into target tissues via gene carriers commonly defined as vectors. The retroviral, adenoviral and adeno-associated virus based vectors are most frequently used in the clinic. So far, gene preparations may be administered directly into target organs or by intravenous, intramuscular, intratumor or intranasal injections. It is common knowledge that the number of gene therapy clinical trials has rapidly increased. However, some limitations such as transfection efficiency and stable and long-term gene expression are still not resolved. Consequently, great effort is focused on the evaluation of new strategies of gene delivery. There are many expectations associated with intranasal delivery of gene preparations for the treatment of diseases. Intranasal delivery of therapeutic genes is regarded as one of the most promising forms of pulmonary gene therapy research. Gene therapy based on inhalation of gene preparations offers an alternative way for the treatment of patients suffering from such lung diseases as cystic fibrosis, alpha-1-antitrypsin defect, or cancer. Experimental and first clinical trials based on plasmid vectors or recombinant viruses have revealed that gene preparations can effectively deliver therapeutic or marker genes to the cells of the respiratory tract. The noninvasive intranasal delivery of gene preparations or conventional drugs seems to be very encouraging, although basic scientific research still has to continue.

11 Reads
  • Source
    • "Pulmonary complications are the primary cause of morbidity and mortality associated with cystic fibrosis (CF), asthma, and other lifethreatening disorders [1] [2]. A great deal of effort has aimed at development of gene therapy strategies for the airways, including clinical evaluation of a large number of viral and non-viral gene delivery systems in patients with lung diseases [3] [4]. The majority of these trials have utilized recombinant viruses, but immunogenicity, safety concerns , and inefficient gene transfer have precluded their success [3] [5]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Inhaled gene carriers must penetrate the highly viscoelastic and adhesive mucus barrier in the airway in order to overcome rapid mucociliary clearance and reach the underlying epithelium; however, even the most widely used viral gene carriers are unable to efficiently do so. We developed two polymeric gene carriers that compact plasmid DNA into small and highly stable nanoparticles with dense polyethylene glycol (PEG) surface coatings. These highly compacted, densely PEG-coated DNA nanoparticles rapidly penetrate human cystic fibrosis (CF) mucus ex vivo and mouse airway mucus ex situ. Intranasal administration of the mucus penetrating DNA nanoparticles greatly enhanced particle distribution, retention and gene transfer in the mouse lung airways compared to conventional gene carriers. Successful delivery of a full-length plasmid encoding the cystic fibrosis transmembrane conductance regulator protein was achieved in mouse lungs and airway cells, including a primary culture of mucus-covered human airway epithelium grown at air-liquid interface, without causing acute inflammation or toxicity. Highly compacted mucus penetrating DNA nanoparticles hold promise for lung gene therapy.
    Journal of Controlled Release 01/2014; 178(1). DOI:10.1016/j.jconrel.2014.01.007 · 7.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Until the late 1990s, aerosol therapy consisted of beta2-adrenergic agonists, anti-cholinergics, steroidal and non-steroidal agents, mucolytics and antibiotics that were used to treat patients with asthma, COPD and cystic fibrosis. Since then, inhalation therapy has matured to include drugs that: (1) are designed to treat diseases outside the lung and whose target is the systemic circulation (systemic drug delivery); (2) deliver nucleic acids that lead to permanent expression of a gene construct, or protein coding sequence, in a population of cells (gene therapy); and (3) provide needle-free immunization against disease (aerosolized vaccination). During the evolution of these advanced applications, it was also necessary to develop new devices that provided increased dosing efficiency and less loss during delivery. This review will present an update on the success of each of these new applications and their devices. The early promise of aerosolized systemic drug delivery and its outlook for future success will be highlighted. In addition, the challenges to aerosolized gene therapy and the need for appropriate gene vectors will be discussed. Finally, progress in the development of aerosolized vaccination will be presented. The continued expansion of the role of aerosol therapy in the future will depend on: (1) improving the bioavailability of systemically delivered drugs; (2) developing gene therapy vectors that can efficiently penetrate the mucus barrier and cell membrane, navigate the cell cytoplasm and efficiently transfer DNA material to the cell nucleus; (3) improving delivery of gene vectors and vaccines to infants; and (4) developing formulations that are safe for acute and chronic administrations.
    Respiratory care 10/2005; 50(9):1161-76. DOI:10.1186/2213-0802-2-3 · 1.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Current cancer treatments may create profound iatrogenic outcomes. The adverse effects of these treatments still remain, as the serious problems that practicing physicians have to cope with in clinical practice. Although, non-specific cytotoxic agents constitute an effective treatment modality against cancer cells, they also tend to kill normal, quickly dividing cells. On the other hand, therapies targeting the genome of the tumors are both under investigation, and some others are already streamlined to clinical practice. Several approaches have been investigated in order to find a treatment targeting the cancer cells, while not affecting the normal cells. Suicide gene therapy is a therapeutic strategy, in which cell suicide inducing transgenes are introduced into cancer cells. The two major suicide gene therapeutic strategies currently pursued are: cytosine deaminase/5-fluorocytosine and the herpes simplex virus/ganciclovir. The novel strategies include silencing gene expression, expression of intracellular antibodies blocking cells' vital pathways, and transgenic expression of caspases and DNases. We analyze various elements of cancer cells' suicide inducing strategies including: targets, vectors, and mechanisms. These strategies have been extensively investigated in various types of cancers, while exploring multiple delivery routes including viruses, non-viral vectors, liposomes, nanoparticles, and stem cells. We discuss various stages of streamlining of the suicide gene therapy into clinical oncology as applied to different types of cancer. Moreover, suicide gene therapy is in the center of attention as a strategy preventing cancer from developing in patients participating in the clinical trials of regenerative medicine. In oncology, these clinical trials are aimed at regenerating, with the aid of stem cells, of the patients' organs damaged by pathologic and/or iatrogenic factors. However, the stem cells carry the risk of neoplasmic transformation. We discuss cell suicide inducing strategies aimed at preventing stem cell-originated cancerogenesis.
    08/2013; 4(1). DOI:10.4172/2157-7412.1000139
Show more

Similar Publications