Article

Factores genéticos que inciden en la resistencia a enfermedades infecciosas en salmónidos y su aplicación en programas de mejoramiento

Archivos de Medicina Veterinaria (Impact Factor: 0.35). 12/2009; 42(1):1-13. DOI: 10.4067/S0301-732X2010000200002

ABSTRACT El control de las enfermedades infecciosas es fundamental en el éxito del cultivo del salmón. El mejoramiento genético de la resistencia a enfermedades puede otorgar una opción factible y sustentable para el control de éstas. La Selección Asistida por Marcadores Moleculares (MAS) o Genes (GAS) se proyecta como una valiosa alternativa al mejoramiento convencional de la resistencia. Sin embargo, para implementar esta metodología es necesario el conocimiento previo de los factores genéticos involucrados en el carácter. En este trabajo se revisan y se discuten los aspectos más relevantes de la resistencia genética a enfermedades infecciosas en salmónidos y su aplicabilidad a programas de mejoramiento. En primer lugar, se presentan brevemente las enfermedades infecciosas más relevantes a nivel nacional. Además, se incluyen aspectos relacionados con el mejoramiento convencional para este rasgo cuantitativo, tales como criterios de selección, variación genética de la resistencia y correlaciones genéticas con otros caracteres de interés productivo. Por otra parte, se revisan tres aproximaciones moleculares utilizadas en la identificación de los factores genéticos involucrados en la resistencia: genes candidatos, con especial énfasis en el complejo mayor de histocompatibilidad (MHC) o genes MH, detección de loci de efecto cuantitativo (QTL) y estudios de expresión génica. Finalmente, se revisa y se discute en relación a la utilización de esta información molecular en la implementación de programas de mejoramiento genético que incluyan la resistencia a enfermedades infecciosas dentro de su objetivo de selección.

0 Bookmarks
 · 
161 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Amplified fragment length polymorphisms (AFLPs) currently are among the most widely used marker systems. In many studies, AFLPs are analyzed on the basis of the presence or absence of a band on an electrophoretic gel. As a result, dominant homozygous individuals are not distinguished from heterozygous individuals, resulting in a considerable loss of information. This article shows how codominant information can be obtained if the amount of PCR products is quantified. Due to measurement variation, genotyping on the basis of such information is not error-free. We propose use of normal mixture distributions to determine the most likely genotype, given the data. The method is exemplified using AFLP data from sugar beet.
    Genetics 08/2000; 155(3):1459-68. · 4.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Molecular genetics can be integrated with traditional methods of artificial selection on phenotypes by applying marker-assisted selection (MAS). We derive selection indices that maximize the rate of improvement in quantitative characters under different schemes of MAS combining information on molecular genetic polymorphisms (marker loci) with data on phenotypic variation among individuals (and their relatives). We also analyze statistical limitations on the efficiency of MAS, including the detectability of associations between marker loci and quantitative trait loci, and sampling errors in estimating the weighting coefficients in the selection index. The efficiency of artificial selection can be increased substantially using MAS following hybridization of selected lines. This requires initially scoring genotypes at a few hundred molecular marker loci, as well as phenotypic traits, on a few hundred to a few thousand individuals; the number of marker loci scored can be greatly reduced in later generations. The increase in selection efficiency from the use of marker loci, and the sample sizes necessary to achieve them, depend on the genetic parameters and the selection scheme.
    Genetics 04/1990; 124(3):743-56. · 4.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Most teleost species, especially freshwater groups such as the Esocidae which are the closest relatives of salmonids, have a karyotype comprising 25 pairs of acrocentric chromosomes and 48-52 chromosome arms. After the common ancestor of salmonids underwent a whole genome duplication, its karyotype would have 100 chromosome arms, and this is reflected in the modal range of 96-104 seen in extant salmonids (e.g., rainbow trout). The Atlantic salmon is an exception among the salmonids as it has 72-74 chromosome arms and its karyotype includes 12 pairs of large acrocentric chromosomes, which appear to be the result of tandem fusions. The purpose of this study was to integrate the Atlantic salmon's linkage map and karyotype and to compare the chromosome map with that of rainbow trout. The Atlantic salmon genetic linkage groups were assigned to specific chromosomes in the European subspecies using fluorescence in situ hybridization with BAC probes containing genetic markers mapped to each linkage group. The genetic linkage groups were larger for metacentric chromosomes compared to acrocentric chromosomes of similar size. Comparison of the Atlantic salmon chromosome map with that of rainbow trout provides strong evidence for conservation of large syntenic blocks in these species, corresponding to entire chromosome arms in the rainbow trout. It had been suggested that some of the large acrocentric chromosomes in Atlantic salmon are the result of tandem fusions, and that the small blocks of repetitive DNA in the middle of the arms represent the sites of chromosome fusions. The finding that the chromosomal regions on either side of the blocks of repetitive DNA within the larger acrocentric chromosomes correspond to different rainbow trout chromosome arms provides support for this hypothesis.
    BMC Genetics 09/2009; 10:46. · 2.81 Impact Factor

Full-text

Download
150 Downloads
Available from
May 22, 2014