Conference Paper

Benchmarking and Improving III-V Esaki Diode Performance with a Record 2.2 MA/cm2 Peak Current Density to Enhance TFET Drive Current

DOI: 10.1109/IEDM.2012.6479118 Conference: International Electron Device Meeting


Recently, III-V tunneling field effect transistors (TFET) for low voltage logic applications (<0.5V) have gained attention with the demonstration of sub-60 mV/dec. subthreshold slopes [1]. A key outstanding issue with TFETs is limited drive currents, due to non-optimized carrier tunneling. With that issue in mind, the aim of this work is to map III-V Esaki tunnel diode (TD) performance to engineer TDs with ultra high current densities while maintaining large peak-to-valley current ratios (PVCR). This work describes the most comprehensive experimental benchmarking of TD performance reported, including (i) GaAs, (ii) In0.53Ga0.47As, (iii) InAs, (iv) InAs 0.9Sb0.1/Al0.4Ga0.6Sb, and (v) InAs/GaSb as a function of doping and effective tunnel barrier height. These results confirm that heterojunctions (bandgap engineering) and doping will enhance peak (JP) and Zener current densities beyond homojunction TDs [3], to a record 2.2MA/cm2 (JP) and 11 MA/cm2 (@ -0.3 V), laying the fundamental groundwork for a III-V TFET at the 7 nm technology node.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: With voltage scaling to reduce power consumption in scaled transistors the subthreshold swing is becoming a critical factor influencing the minimum voltage margin between the transistor on and off-states. Conventional metal-oxide-semiconductor field-effect transistors (MOSFETs) are fundamentally limited to a 60 mV/dec swing due to the thermionic emission current transport mechanism at room temperature. Tunnel field-effect transistors (TFETs) utilize band-to-band tunneling as the current transport mechanism resulting in the potential for sub-60 mV/dec subthreshold swings and have been identified as a possible replacement to the MOSFET for low-voltage logic applications. The TFET operates as a gated p-i-n diode under reverse bias where the gate electrode is placed over the intrinsic channel allowing for modulation of the tunnel barrier thickness. When the barrier is sufficiently thin the tunneling probability increases enough to allow for significant number of electrons to tunnel from the source into the channel. To date, experimental TFET reports using III-V semiconductors have failed to produce devices that combine a steep subthreshold swing with a large enough drive current to compete with scaled CMOS. This study developed the foundations for TFET fabrication by improving an established Esaki tunnel diode process flow and extending it to include the addition of a gate electrode to form a TFET. The gating process was developed using an In 0.53 Ga 0.57 As TFET which demonstrated a minimum subthreshold slope of 100 mV/dec. To address the issue of TFET drive current an InAs/GaSb heterojunction TFET structure was investigated taking advantage of the smaller tunnel barrier height.
    08/2013, Degree: M.S. Microelectronic Engineering, Supervisor: Sean L. Rommel
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report a theoretical investigation on the electrical properties of a Sn-based group-IV structure for a resonant tunneling diode (RTD). The analysis on the composition-dependent strain, energy profile, and current-voltage characteristic of a double-barrier heterostructure shows that the peak current density and peak-to-valley ratio are enhanced with a moderated tensile strain in the barrier layer, providing an alternative approach for group-IV RTDs.
    IEEE Electron Device Letters 08/2013; 34(8):951-953. DOI:10.1109/LED.2013.2266540 · 2.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The integration of III-V compound semiconductors with Si can combine the cost advantage and maturity of Si technology with the superior performance of III-V materials. We have achieved the heteroepitaxial growth of III-V compound semiconductors on a crystalline SrTiO3 buffer layer grown on Si (001) substrates. A two-step growth process utilizing a high temperature nucleation layer of GaAs, followed by a low-temperature GaAs layer at a higher growth rate was employed to achieve highly crystalline thick GaAs layers on the SrTiO3/Si substrates with low surface roughness as seen by AFM. The effect of the GaAs nucleation layer on different surface terminations for the SrTiO3 layer was studied for both on axis and miscut wafers, which led to the conclusion that the Sr terminated surface on miscut substrates provide the best GaAs films. Using GaAs/STO/Si as virtual substrates, we have optimized growth of high quality GaSb using the interfacial misfit (IMF) dislocation array technique. This work can lead to the possibility of realizing infrared detectors and next-generation high mobility III-V CMOS within the existing Si substrate infrastructure.
    Journal of Crystal Growth 02/2015; 425. DOI:10.1016/j.jcrysgro.2015.02.022 · 1.70 Impact Factor
Show more