Article

Notch signaling maintains Leydig progenitor cells in the mouse testis.

The Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
Development (Impact Factor: 6.21). 11/2008; 135(22):3745-53. DOI: 10.1242/dev.024786
Source: PubMed

ABSTRACT During testis development, fetal Leydig cells increase their population from a pool of progenitor cells rather than from proliferation of a differentiated cell population. However, the mechanism that regulates Leydig stem cell self-renewal and differentiation is unknown. Here, we show that blocking Notch signaling, by inhibiting gamma-secretase activity or deleting the downstream target gene Hairy/Enhancer-of-split 1, results in an increase in Leydig cells in the testis. By contrast, constitutively active Notch signaling in gonadal somatic progenitor cells causes a dramatic Leydig cell loss, associated with an increase in undifferentiated mesenchymal cells. These results indicate that active Notch signaling restricts fetal Leydig cell differentiation by promoting a progenitor cell fate. Germ cell loss and abnormal testis cord formation were observed in both gain- and loss-of-function gonads, suggesting that regulation of the Leydig/interstitial cell population is important for male germ cell survival and testis cord formation.

0 Bookmarks
 · 
83 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The herbicide linuron (LIN) is an endocrine disruptor with an anti-androgenic mode of action. The objectives of this study were to (1) improve knowledge of androgen and anti-androgen signaling in the teleostean ovary and to (2) assess the ability of gene networks and machine learning to classify LIN as an anti-androgen using transcriptomic data. Ovarian explants from vitellogenic fathead minnows (FHMs) were exposed to three concentrations of either 5α-dihydrotestosterone (DHT), flutamide (FLUT), or LIN for 12h. Ovaries exposed to DHT showed a significant increase in 17β-estradiol (E2) production while FLUT and LIN had no effect on E2. To improve understanding of androgen receptor signaling in the ovary, a reciprocal gene expression network was constructed for DHT and FLUT using pathway analysis and these data suggested that steroid metabolism, translation, and DNA replication are processes regulated through AR signaling in the ovary. Sub-network enrichment analysis revealed that FLUT and LIN shared more regulated gene networks in common compared to DHT. Using transcriptomic datasets from different fish species, machine learning algorithms classified LIN successfully with other anti-androgens. This study advances knowledge regarding molecular signaling cascades in the ovary that are responsive to androgens and anti-androgens and provides proof of concept that gene network analysis and machine learning can classify priority chemicals using experimental transcriptomic data collected from different fish species.
    Comparative Biochemistry and Physiology Part D Genomics and Proteomics 08/2013; 8(4):263-274. · 2.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in the human NOTCH3 gene cause Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL). CADASIL is an inherited small vessel disease characterized by diverse clinical manifestations including vasculopathy, neurodegeneration, and dementia. Here we report two mutations in the zebrafish notch3 gene, one identified in a previous screen for mutations with reduced expression of myelin basic protein (mbp) and another caused by a retroviral insertion. Reduced mbp expression in embryos is associated with fewer oligodendrocyte precursor cells (OPCs) in notch3 mutants. Despite an early neurogenic phenotype, mbp expression recovered at later developmental stages and some of notch3 homozygous mutants survived to adulthood. Adult mutants for both notch3 alleles displayed a striking stress-associated accumulation of blood. Histological analysis of mutant vessels revealed vasculopathy, including an enlargement (dilation) of vessels in the telencephalon and fin, disorganization of the normal stereotyped arrangement of vessels in the fin, and an apparent loss of arterial morphological structure. Expression of hey1, a well-known transcriptional target of Notch signaling, was greatly reduced in notch3 mutants, suggesting Notch3 acts via a canonical Notch signaling pathway to promote normal vessel structure. Ultrastructural analysis confirmed the presence of dilated vessels in notch3 mutant fins and revealed that the vessel walls of presumed arteries showed signs of deterioration. Gaps evident in the arterial wall and the presence of blood cells outside of vessels in mutants indicated that compromised vessel structure led to hemorrhage. In notch3 heterozygotes, we found elevated expression of notch3 itself and target genes, indicating that specific alterations in gene expression caused by a partial loss of Notch3 function may contribute to pathologies observed in heterozygous larvae and adults. Our analysis of zebrafish notch3 mutants indicates that Notch3 regulates OPC development and mbp gene expression in larvae, and maintains vascular integrity in adults.
    Disease Models and Mechanisms 05/2013; · 4.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Development of testes in the mammalian embryo requires the formation and assembly of several cell types that allow these organs to achieve their roles in male reproduction and endocrine regulation. Testis development is unusual in that several cell types such as Sertoli, Leydig, and spermatogonial cells arise from bipotential precursors present in the precursor tissue, the genital ridge. These cell types do not differentiate independently but depend on signals from Sertoli cells that differentiate under the influence of transcription factors SRY and SOX9. While these steps are becoming better understood, the origins and roles of many testicular cell types and structures-including peritubular myoid cells, the tunica albuginea, the arterial and venous blood vasculature, lymphatic vessels, macrophages, and nerve cells-have remained unclear. This review synthesizes current knowledge of how the architecture of the testis unfolds and highlights the questions that remain to be explored, thus providing a roadmap for future studies that may help illuminate the causes of XY disorders of sex development, infertility, and testicular cancers.
    Genes & development 11/2013; 27(22):2409-26. · 12.08 Impact Factor

Full-text (2 Sources)

View
5 Downloads
Available from
Jun 10, 2014