Expression of a fungal sterol desaturase improves tomato drought tolerance, pathogen resistance and nutritional quality

National Institute of Plant Genome Research , New Delhi, India.
Scientific Reports (Impact Factor: 5.58). 12/2012; 2:951. DOI: 10.1038/srep00951
Source: PubMed


Crop genetic engineering mostly aims at improving environmental stress (biotic and abiotic) tolerance as well as nutritional quality. Empowering a single crop with multiple traits is highly demanding and requires manipulation of more than one gene. However, we report improved drought tolerance and fungal resistance along with the increased iron and polyunsaturated fatty acid content in tomato by expressing a single gene encoding C-5 sterol desaturase (FvC5SD) from an edible fungus Flammulina velutipes. FvC5SD is an iron binding protein involved in ergosterol biosynthesis. Morphological and biochemical analyses indicated ≈23% more epicuticular wax deposition in leaves of transgenic plants that provides an effective waterproof barrier resulting in improved protection from drought and infection by phytopathogenic fungus Sclerotinia
sclerotiorum. Furthermore, the transgenic fruits have improved nutritional value attributed to enhanced level of beneficial PUFA and 2-3 fold increase in total iron content. This strategy can be extended to other economically important crops.

Download full-text


Available from: Mohammad Azam,
    • "For instance, the transgenic wheat lines overexpressing myeloblastosis oncogenes TaPIMP1 were found to display increased resistance to fungal pathogen compared with wild-type control (Zhang et al. 2012). In other crop and model species such as rice, maize, tomato and Arabidopsis, the genes controlling both drought tolerance and pathogen disease resistance were also identified (Alam et al. 2015; Campo et al. 2012; Kamthan et al. 2012; Ramírez et al. 2009). However, to finally determine if Qheb.mda-3B and Qcrs.cpi-3B are tightly linked genes or a single gene with pleiotropic effects, further work such as fine mapping is required. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Malondialdehyde (MDA) is a naturally occurring product of lipid peroxidation and the level of MDA in plant is often used as a parameter to evaluate the damage to plants' cells due to stress. Plant with lower amounts of MDA under drought conditions is generally considered as more tolerant to drought. In this study, a population of recombinant inbred lines was used to map the quantitative trait locus (QTLs) that controlled MDA content under well-watered condition (WW) and water deficit (WD) condition. A major QTL, designated as Qheb.mda-3B, was detected on the long arm of chromosome 3B. Based on interval mapping analysis, Qheb.mda-3B explained 31.5 and 39.0 % of the phenotypic variance under WW and WD conditions, respectively. Qheb.mda-3B was located in the same interval as a previously identified QTL (Qcrs.cpi-3B) that controlled resistance to Fusarium crown rot (FCR), a fungal disease caused by Fusarium species. Three pairs of near-isogenic lines (NILs) previously developed for Qcrs.cpi-3B were found to show significant differences in MDA content under WD condition. These results suggested that same set of genes is likely to be involved in drought tolerance and FCR resistance in wheat.
    MGG Molecular & General Genetics 05/2015; 290(5). DOI:10.1007/s00438-015-1053-3 · 2.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The importance of optimal nutrition for human health and development is well recognised. Adverse environmental conditions, such as drought, flooding, extreme heat and so on, affect crop yields more than pests and diseases. Thus, a major goal of plant scientists is to find ways to maintain high productivity under stress as well as developing crops with enhanced nutritional value. Genetically-modified (GM) crops can prove to be powerful complements to those produced by conventional methods for meeting the worldwide demand for quality foods. Crops developed by genetic engineering can not only be used to enhance yields and nutritional quality but also for increased tolerance to various biotic and abiotic stresses. Although there have been some expressions of concern about biosafety and health hazards associated with GM crops, there is no reason to hesitate in consuming genetically-engineered food crops that have been thoughtfully developed and carefully tested. Integration of modern biotechnology, with conventional agricultural practices in a sustainable manner, can fulfil the goal of attaining food security for present as well as future generations.
    Agriculture and Food Security 01/2013; 2(1):15. DOI:10.1186/2048-7010-2-15
  • [Show abstract] [Hide abstract]
    ABSTRACT: Interest in use of flax (Linum usitatissimum L.) as cadmium (Cd)-accumulating plant for phytoextraction of contaminated soils opened up a new and promising avenue toward improving tolerance of its varieties and cultivars to Cd stress. The aim of this study is to get insights into the mechanisms of Cd detoxification in cell membranes, by exploring the effects of salicylic acid (SA)-induced priming on fatty acids and lipid composition of flax plantlets, grown for 10 days with 50 and 100 μM Cd. At leaf level, levels of monogalactosyldiacylglycerol (MGDG), phosphatidylcholine (PC), phosphatidylglycerol (PG), and neutral lipids (NL) have shifted significantly in flax plantlets exposed to toxic CdCl2 concentrations, as compared to that of the control. At 100 μM Cd, the linoleic acid (C18:2) decreases mainly in digalactosyldiacylglycerol (DGDG) and all phospholipid species, while linolenic acid (C18:3) declines mostly in MGDG and NL. Conversely, at the highest concentration of the metal, SA significantly enhances the levels of MGDG, PG and phosphatidic acid (PA), and polyunsaturated fatty acids mainly C18:2 and C18:3. Furthermore, SA pretreatment seems to reduce the Cd-induced alterations in both plastidial and extraplastidial lipid classes, but preferentially preserves the plastidial lipids by acquiring higher levels of polyunsaturated fatty acids. These results suggest that flax plantlets pretreated with SA exhibits more stability of their membranes under Cd-stress conditions.
    Environmental Science and Pollution Research 08/2014; 22(2). DOI:10.1007/s11356-014-3475-6 · 2.83 Impact Factor
Show more