Article

Why have tobacco control policies stalled? Using genetic moderation to examine policy impacts.

Department of Health Policy and Management, Yale School of Public Health, New Haven, Connecticut, United States of America.
PLoS ONE (Impact Factor: 3.53). 12/2012; 7(12):e50576. DOI: 10.1371/journal.pone.0050576
Source: PubMed

ABSTRACT Research has shown that tobacco control policies have helped produce the dramatic decline in use over the decades following the 1964 surgeon general's report. However, prevalence rates have stagnated during the past two decades in the US, even with large tobacco taxes and expansions of clean air laws. The observed differences in tobacco control policy effectiveness and why policies do not help all smokers are largely unexplained.
The aim of this study was to determine the importance of genetics in explaining response to tobacco taxation policy by testing the potential of gene-policy interaction in determining adult tobacco use.
A moderated regression analysis framework was used to test interactive effects between genotype and tobacco policy in predicting tobacco use. Cross sectional data of US adults from the National Health and Nutrition Examination Survey (NHANES) linked with genotype and geocodes were used to identify tobacco use phenotypes, state-level taxation rates, and variation in the nicotinic acetylcholine receptor (CHRNA6) genotype. Tobacco use phenotypes included current use, number of cigarettes smoked per day, and blood serum cotinine measurements.
Variation in the nicotinic acetylcholine receptor was found to moderate the influence of tobacco taxation on multiple measures of tobacco use. Individuals with the protective G/G polymorphism (51% of the sample) responded to taxation while others had no response. The estimated differences in response by genotype were C/C genotype: b = -0.016 se  = 0.018; G/C genotype: b = 0.014 se  = 0.017; G/G genotype: b = -0.071 se 0.029.
This study provides novel evidence of "gene-policy" interaction and suggests a genetic mechanism for the large differences in response to tobacco policies. The inability for these policies to reduce use for individuals with specific genotypes suggests alternative methods may be needed to further reduce use.

0 Followers
 · 
53 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: This article uses a gene-environment interaction framework to examine the differential responses to an objective external stressor based on genetic variation in the production of depressive symptoms. This article advances the literature by utilizing a quasi-experimental environmental exposure design, as well as a regression discontinuity design, to control for seasonal trends, which limit the potential for gene-environment correlation and allow stronger causal claims. Replications are attempted for two prominent genes (5-HTT and MAOA), and three additional genes are explored (DRD2, DRD4, and DAT1). This article provides evidence of a main effect of 9/11 on reports of feelings of sadness and fails to replicate a common finding of interaction using 5-HTT but does show support for interaction with MAOA in men. It also provides new evidence that variation in the DRD4 gene modifies an individual's response to the exposure, with individuals with no 7-repeats found to have a muted response.
    05/2014; 60(1):1-20. DOI:10.1080/19485565.2014.899454
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The sequencing of the human genome and the advent of low-cost genome-wide assays that generate millions of observations of individual genomes in a matter of hours constitute a disruptive innovation for social science. Many public use social science datasets have or will soon add genome-wide genetic data. With these new data come technical challenges, but also new possibilities. Among these, the lowest-hanging fruit and the most potentially disruptive to existing research programs is the ability to measure previously invisible contours of health and disease risk within populations. In this article, we outline why now is the time for social scientists to bring genetics into their research programs. We discuss how to select genetic variants to study. We explain how the polygenic architecture of complex traits and the low penetrance of individual genetic loci pose challenges to research integrating genetics and social science. We introduce genetic risk scores as a method of addressing these challenges and provide guidance on how genetic risk scores can be constructed. We conclude by outlining research questions that are ripe for social science inquiry.
    Biodemography and Social Biology 10/2014; 60(2):137-55. DOI:10.1080/19485565.2014.946591 · 1.37 Impact Factor
  • Journal of Policy Analysis and Management 03/2014; 33(2). DOI:10.1002/pam.21752 · 0.93 Impact Factor

Preview

Download
0 Downloads
Available from