Hydrogel crosslinking density regulates temporal contractility of human embryonic stem cell-derived cardiomyocytes in 3D cultures

Materials Science and Engineering, McCullough Building, 476 Lomita Mall, Stanford, CA, USA.
Soft Matter (Impact Factor: 4.03). 10/2012; 8(39):10141-10148. DOI: 10.1039/C2SM26082D
Source: PubMed


Systematically tunable in vitro platforms are invaluable in gaining insight to stem cell-microenvironment interactions in three-dimensional cultures. Utilizing recombinant protein technology, we independently tune hydrogel properties to systematically isolate the effects of matrix crosslinking density on cardiomyocyte differentiation, maturation, and function. We show that contracting human embryonic stem cell-derived cardiomyocytes (hESC-CMs) remain viable within four engineered elastin-like hydrogels of varying crosslinking densities with elastic moduli ranging from 0.45 to 2.4 kPa. Cardiomyocyte phenotype and function was maintained within hESC embryoid bodies for up to 2 weeks. Interestingly, increased crosslinking density was shown to transiently suspend spontaneous contractility. While encapsulated cells began spontaneous contractions at day 1 in hydrogels of the lowest crosslinking density, onset of contraction was increasingly delayed at higher crosslinking densities up to 6 days. However, once spontaneous contraction was restored, the rate of contraction was similar within all materials (71 ± 8 beats/min). Additionally, all groups successfully responded to electrical pacing at both 1 and 2 Hz. This study demonstrates that encapsulated hESC-CMs respond to 3D matrix crosslinking density within elastin-like hydrogels and stresses the importance of investigating temporal cellular responses in 3D cultures.

1 Follower
15 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Native tissues provide cells with complex, three dimensional (3D) environments comprised of hydrated networks of extracellular matrix proteins and sugars. By mimicking the dimensionality of native tissue while deconstructing the effects of environmental parameters, protein-based hydrogels serve as attractive, in vitro platforms to investigate cell-matrix interactions. For cell encapsulation, the process of hydrogel formation through physical or covalent crosslinking must be mild and cell compatible. While many chemical crosslinkers are commercially available for hydrogel formation, only a subset are cytocompatible; therefore, the identification of new and reliable cytocompatible crosslinkers allows for greater flexibility of hydrogel design for cell encapsulation applications. Here, we introduce tetrakis (hydroxymethyl) phosphonium chloride (THPC) as an inexpensive, amine-reactive, aqueous crosslinker for 3D cell encapsulation in protein-based hydrogels. We characterize the THPC-amine reaction by demonstrating its ability to react with primary and secondary amines of various amino acids. In addition, we demonstrate the utility of THPC to tune hydrogel gelation time (6.7 ± 0.2 to 27 ± 1.2 min) and mechanical properties (storage moduli ~250 Pa to ~2200 Pa) with a recombinant elastin-like protein. Lastly, we show cytocompatibility of THPC for cell encapsulation of two cell types, embryonic stem cells and neuronal cells, where cells exhibited the ability to differentiate and/or grow in elastin-like protein hydrogels.
    Biomacromolecules 11/2012; 13(12). DOI:10.1021/bm3015279 · 5.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: With the remarkable increase in the fields of biomedical engineering and regenerative medicine, biomaterial design has become an indispensable approach for developing the biocompatible carriers for drug or gene cargo and extracellular matrix (ECM) for cell survival, proliferation and differentiation. Native ECM materials derived from animal tissues were believed to be the best choices for tissue engineering. However, possible pathogen contamination by cellular remnants from foreign animal tissues is an unavoidable issue that has limited the use of native ECM for human benefit. Some synthetic polymers have been used as alternative materials for manufacturing native ECM because of the biodegradability and ease of large-scale production of the polymers. However, the inherent polydispersity of the polymers causes batch-to-batch variation in polymer composition and possible cytotoxic interactions between chemical matrices and neighboring cells or tissues have not yet been fully resolved. Elastin-like proteins (ELPs) are genetically engineered biopolymers modeled after the naturally occurring tropoelastin and have emerged as promising materials for biomedical applications because they are biocompatible, non-immunogenic and biodegradable, and their composition, mechanical stiffness and even fate within the cell can be controlled at the gene level. This commentary highlights the recent progresses in the development of the ELP-based recombinant proteins that are being increasingly used for the delivery of chemotherapeutics and to provide a cell-friendly ECM environment.
    03/2013; 4(6). DOI:10.4161/bioe.24158
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A classical paradigm of tissue engineering is to grow tissues for implantation by using human stem cells in conjunction with biomaterial scaffolds (templates for tissue formation) and bioreactors (culture systems providing environmental control). A reverse paradigm is now emerging through microphysiological platforms for preclinical testing of drugs and modeling of disease that contain large numbers of very small human tissues. We discuss the biomimetic approach as a common underlying principle and some of the specifics related to the design and utilization of platforms with heart micro-tissues for high-throughput screening in vitro.
    Current Opinion in Biotechnology 08/2013; 24(5). DOI:10.1016/j.copbio.2013.07.002 · 7.12 Impact Factor
Show more