Article

Multiplex immunoassay for serological diagnosis of Mycobacterium bovis infection in cattle.

Enfer Scientific, Unit T, M7 Business Park, Newhall, Naas, County Kildare, Ireland.
Clinical and vaccine Immunology: CVI (Impact Factor: 2.6). 11/2008; 15(12):1834-8. DOI: 10.1128/CVI.00238-08
Source: PubMed

ABSTRACT Efforts to develop a better diagnostic assay for bovine tuberculosis have shown that the sensitivity and specificity of an assay can be improved by the use of two or more antigens. As reported here, we developed a multiplex chemiluminescent immunoassay that can simultaneously detect antibody activity to 25 antigens in a single well in a 96-well plate array format. The chemiluminescent signal is captured with a digital imaging system and analyzed with a macro program that tracks each serum for its pattern of antibody activity for Mycobacterium bovis antigens. The comparison of sera from 522 infected and 1,489 uninfected animals showed that a sensitivity of 93.1% and a specificity of 98.4% can be achieved with a combination of antigens. The assay system is rapid and can be automated for use in a centralized laboratory.

0 Bookmarks
 · 
153 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A long-term research programme has been underway in Ireland to evaluate the usefulness of badger vaccination as part of the national bTB (bovine tuberculosis) control strategy. This culminated in a field trial which commenced in county Kilkenny in 2009 to determine the effects of badger vaccination on Mycobacterium bovis transmission in badgers under field conditions. In the present study, we sought to optimise the characteristics of a multiplex chemiluminescent assay for detection of M. bovis infection in live badgers. Our goal was to maximise specificity, and therefore statistical power, during evaluation of the badger vaccine trial data. In addition, we also aimed to explore the effects of vaccination on test characteristics. For the test optimisation, we ran a stepwise logistic regression with analytical weights on the converted Relative Light Units (RLU) obtained from testing blood samples from 215 badgers captured as part of culling operations by the national Department of Agriculture, Food and the Marine (DAFM). The optimised test was applied to two other datasets obtained from two captive badger studies (Study 1 and Study 2), and the sensitivity and specificity of the test was attained separately for vaccinated and non-vaccinated badgers. During optimisation, test sensitivity was maximised (30.77%), while retaining specificity at 99.99%. When the optimised test was then applied to the captive badger studies data, we observed that test characteristics did not vary greatly between vaccinated and non-vaccinated badgers. However, a different time lag between infection and a positive test result was observed in vaccinated and non-vaccinated badgers. We propose that the optimized multiplex immunoassay be used to analyse the vaccine trial data. In relation to the difference in the time lag observed for vaccinated and non-vaccinated badgers, we also present a strategy to enable the test to be used during trial evaluation.
    PLoS ONE 01/2014; 9(7):e100139. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The infection of both captive and free-ranging wildlife species with pathogenic mycobacteria (including Mycobacterium tuberculosis) poses a zoonotic risk and continues to cause challenges for the livestock industry, zoos and governments around the world. Central to the management and control of tuberculosis is timely and accurate diagnosis. In many cases, bacterial culture is insufficiently sensitive and confirmation of TB post-mortem is neither feasible nor desirable. In this context, there is still considerable research interest in, and need for, immunological methods for diagnosis. Reviews on this topic were published in 2005 and 2009, but since then veterinarians and other researchers have continued to evaluate immunodiagnostic approaches to TB. These include serological tests such as lateral-flow devices, and enzyme-linked immunosorbent assay (ELISA) and those based on evaluation of cell-mediated immunity, such as the tuberculin skin test and interferon-gamma release assay (IGRA). Since 2009, the range of publications on this topic has been extended to a number of new species, including South American camelids, black rhinoceros, lions and non-human primates. Therefore, it seemed appropriate to review the literature in the 3 years since 2009 and provide an overview of progress.
    Transboundary and Emerging Diseases 11/2013; 60(s1). · 2.10 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The use of serological assays for diagnosis of bovine tuberculosis (TB) has been intensively studied and use of specific antigens have aided in improving the diagnostic accuracy of the assays. In the present study, we report an in-house enzyme linked immunosorbent assay (ELISA), developed by using ethanol extract of Mycobacterium bovis (M. bovis). The assay, named (ethanol vortex ELISA [EVELISA]), was evaluated for detection of anti- M. bovis antibodies in the sera of cattle and white-tailed deer.
    BMC Veterinary Research 07/2014; 10(1):147. · 1.86 Impact Factor

Full-text

Download
98 Downloads
Available from
May 22, 2014