Quercetin and Interferon-beta modulate immune response(s) in Peripheral Blood Mononuclear Cells Isolated from Multiple Sclerosis Patients

Department of Neurology, Baird MS Center, Jacobs Neurological Institute, Buffalo, NY 14223 , United States.
Journal of Neuroimmunology (Impact Factor: 2.47). 11/2008; 205(1-2):142-7. DOI: 10.1016/j.jneuroim.2008.09.008
Source: PubMed


The study is aimed to determine the role of quercetin (3,3'4',5,7-pentahydroxy flavone), alone and in combination with human interferon-beta (IFN-beta), in modulating the immune response(s) of peripheral blood mononuclear cells (PBMC) isolated from multiple sclerosis (MS) patients and from normal healthy subjects. PBMC proliferation in the presence or absence of these drugs was determined and the production of proinflammatory cytokines (IL-1beta, TNF-alpha), and the ratio of cell migration mediator MMP-9, and its inhibitor, TIMP-1 were assessed in the culture supernatants. Quercetin reduced, in a dose-dependent manner, the proliferation of PBMC and modulated the level of IL-1beta and TNF-alpha released by PBMC in the culture supernatants. Quercetin reduced the MMP-9/TIMP-1 ratio via lowering MMP-9 production. Quercetin, when combined with IFN-beta, had additive effects in modulating TNF-alpha and MMP-9. These immunomodulatory responses to quercetin were similar between MS patients and healthy control (HC) subjects.

18 Reads
  • Source
    • "Cell culture studies [76] have also shown SIRT1-mediated neuroprotection by resveratrol. Quercetin was found to control immune response via modulation of IL-1í µí»½ and TNF-í µí»¼ and reduced the proliferation of peripheral blood mononuclear cells isolated from multiple sclerosis patients [77]. Epigallocatechin-3- gallate (EGCG) exhibited neuroprotective effects by modulating neuroinflammation and attenuating neural damage [78]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Aging leads to numerous transitions in brain physiology including synaptic dysfunction and disturbances in cognition and memory. With a few clinically relevant drugs, a substantial portion of aging population at risk for age-related neurodegenerative disorders require nutritional intervention. Dietary intake of polyphenols is known to attenuate oxidative stress and reduce the risk for related neurodegenerative diseases such as Alzheimer's disease (AD), stroke, multiple sclerosis (MS), Parkinson's disease (PD), and Huntington's disease (HD). Polyphenols exhibit strong potential to address the etiology of neurological disorders as they attenuate their complex physiology by modulating several therapeutic targets at once. Firstly, we review the advances in the therapeutic role of polyphenols in cell and animal models of AD, PD, MS, and HD and activation of drug targets for controlling pathological manifestations. Secondly, we present principle pathways in which polyphenol intake translates into therapeutic outcomes. In particular, signaling pathways like PPAR, Nrf2, STAT, HIF, and MAPK along with modulation of immune response by polyphenols are discussed. Although current polyphenol researches have limited impact on clinical practice, they have strong evidence and testable hypothesis to contribute clinical advances and drug discovery towards age-related neurological disorders.
    Oxidative Medicine and Cellular Longevity 06/2013; 2013(1):891748. DOI:10.1155/2013/891748 · 3.36 Impact Factor
  • Source
    • "QRC has antiinflammatory, immunomodulating and antiviral properties, reduces the proliferation of peripheral blood mononuclear cells (PBMCs) and decreases the production of IL-1β, TNF-α and MMP-9. These effects are additive to those of IFN-β [59]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Multiple sclerosis is a complex and multifactorial neurological disease, and nutrition is one of the environmental factors possibly involved in its pathogenesis. At present, the role of nutrition is unclear, and MS therapy is not associated to a particular diet. MS clinical trials based on specific diets or dietary supplements are very few and in some cases controversial. To understand how diet can influence the course of MS and improve the wellness of MS patients, it is necessary to identify the dietary molecules, their targets and the molecular mechanisms involved in the control of the disease. The aim of this paper is to provide a molecular basis for the nutritional intervention in MS by evaluating at molecular level the effect of dietary molecules on the inflammatory and autoimmune processes involved in the disease.
    02/2011; 2010(1):249842. DOI:10.4061/2010/249842
  • Source
    • "This issue includes an interesting article by Sternberg et al. showing that the flavonoid luteolin inhibits IL-1, TNF and metalloproteinase-9 (MMP-9) release from activated peripheral blood mononuclear cells (PBMCs) from multiple sclerosis (MS) patients, and that the effect of luteolin is augmented by concurrent administration of interferon-beta (IFN-β). This paper extends previous similar results with quercetin that required higher concentrations of the flavonoid [1]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Multiple sclerosis (MS) remains without an effective treatment in spite of intense research efforts. Interferon-beta (IFN-beta) reduces duration and severity of symptoms in many relapsing-remitting MS patients, but its mechanism of action is still not well understood. Moreover, IFN-beta and other available treatments must be given parenterally and have a variety of adverse effects. Certain naturally occurring flavonoids, such as luteolin, have anti-oxidant and anti-inflammatory effects, including inhibition of activated peripheral blood leukocytes from MS patients. Luteolin also inhibits mast cells, as well as mast cell-dependent T cell activation, recently implicated in MS pathogenesis. Moreover, luteolin and structurally similar flavonoids can inhibit experimental allergic allergic encephalomyelitis (EAE), an animal model of MS in rodents. An appropriate luteolin formulation that permits sufficient absorption and reduces its metabolism could be a useful adjuvant to IFN-beta for MS therapy.
    Journal of Neuroinflammation 10/2009; 6(1):29. DOI:10.1186/1742-2094-6-29 · 5.41 Impact Factor
Show more