Nicotine-induced Ca2+-myristoyl switch of neuronal Ca2+ sensor VILIP-1 in hippocampal neurons: a possible crosstalk mechanism for nicotinic receptors.

Signal Transduction Research Group, Neuroscience Research Center, Charité Universitaetsmedizin Berlin, Berlin, Germany.
Cellular and Molecular Neurobiology (Impact Factor: 2.29). 11/2008; 29(2):273-86. DOI: 10.1007/s10571-008-9320-z
Source: PubMed

ABSTRACT Visinin-like protein (VILIP-1) belongs to the neuronal Ca2+ sensor family of EF-hand Ca2+-binding proteins that regulate a variety of Ca2+-dependent signal transduction processes in neurons. It is an interaction partner of alpha4beta2 nicotinic acetylcholine receptor (nAChR) and increases surface expression level and agonist sensitivity of the receptor in oocytes. Nicotine stimulation of nicotinic receptors has been reported to lead to an increase in intracellular Ca2+ concentration by Ca2+-permeable nAChRs, which in turn might lead to activation of VILIP-1, by a mechanism described as the Ca2+-myristoyl switch. It has been postulated that this will lead to co-localization of the proteins at cell membranes, where VILIP-1 can influence functional activity of alpha4-containing nAChRs. In order to test this hypothesis we have investigated whether a nicotine-induced and reversible Ca2+-myristoyl switch of VILIP-1 exists in primary hippocampal neurons and whether pharmacological agents, such as antagonist specific for distinct nAChRs, can interfere with the Ca2+-dependent membrane localization of VILIP-1. Here we report, that only alpha7- but not alpha4-containing nAChRs are able to elicit a Ca2+-dependent and reversible membrane-translocation of VILIP-1 in interneurons as revealed by employing the specific receptor antagonists dihydro-beta-erythroidine and methylallylaconitine. The nAChRs are associated with processes of synaptic plasticity in hippocampal neurons and they have been implicated in the pathology of CNS disorders, including Alzheimer's disease and schizophrenia. VILIP-1 might provide a novel functional crosstalk between alpha4- and alpha7-containing nAChRs.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Visinin-like protein 1 (VILIP-1) belongs to the neuronal calcium sensor family of Ca(2+)-myristoyl switch proteins that regulate signal transduction in the brain and retina. Here we analyze Ca(2+) and Mg(2+) binding, characterize metal-induced conformational changes, and determine structural effects of myristoylation and dimerization. Mg(2+) binds functionally to VILIP-1 at EF3 (ΔH = +1.8 kcal/mol and K(D) = 20 μM). Unmyristoylated VILIP-1 binds two Ca(2+) sequentially at EF2 and EF3 (K(EF3) = 0.1 μM and K(EF2) = 1-4 μM), whereas myristoylated VILIP-1 binds two Ca(2+) with lower affinity (K(D) = 1.2 μM) and positive cooperativity (Hill slope = 1.5). NMR assignments and structural analysis indicate that Ca(2+)-free VILIP-1 contains a sequestered myristoyl group like that of recoverin. NMR resonances of the attached myristate exhibit Ca(2+)-dependent chemical shifts and NOE patterns consistent with Ca(2+)-induced extrusion of the myristate. VILIP-1 forms a dimer in solution independent of Ca(2+) and myristoylation. The dimerization site is composed of residues in EF4 and the loop region between EF3 and EF4, confirmed by mutagenesis. We present the structure of the VILIP-1 dimer and a Ca(2+)-myristoyl switch to provide structural insights into Ca(2+)-induced trafficking of nicotinic acetylcholine receptors.
    Journal of Biological Chemistry 02/2011; 286(8):6354-66. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The alpha7* (*denotes the possible presence of additional subunits) nicotinic acetylcholine receptor (nAChR) subtype is widely expressed in the vertebrate nervous system and implicated in neuropsychiatric disorders that compromise thought and cognition. In this report, we demonstrate that the recently developed fluorescent ligand Cy3-ArIB[V11L;V16A] labels alpha7 nAChRs in cultured hippocampal neurons. However, photobleaching of this ligand during long image acquisition times prompted us to develop a new derivative. In photostability studies, this new ligand, Alexa Fluor 546-ArIB[V11L;V16A], was significantly more resistant to bleaching than the Cy3 derivative. The classic alpha7 ligand alpha-bungarotoxin binds to alpha1* and alpha9* nAChRs. In contrast, Alexa Fluor 546-ArIB[V11L;V16A] potently (IC(50) 1.8 nM) and selectively blocked alpha7 nAChRs but not alpha1* or alpha9* nAChRs expressed in Xenopus oocytes. Selectivity was further confirmed by competition binding studies of native nAChRs in rat brain membranes. The fluorescence properties of Alexa Fluor 546-ArIB[V11L;V16A] were assessed using human embryonic kidney-293 cells stably transfected with nAChRs; labeling was observed on cells expressing alpha7 but not cells expressing alpha3beta2, alpha3beta4, or alpha4beta2 nAChRs. Further imaging studies demonstrate that Alexa Fluor 546-ArIB[V11L;V16A] labels hippocampal neurons from wild-type mice but not from nAChR alpha7 subunit-null mice. Thus, Alexa Fluor 546-ArIB[V11L;V16A] represents a potent and selective ligand for imaging alpha7 nAChRs.
    Journal of Neurochemistry 08/2010; 114(4):994-1006. · 3.97 Impact Factor
  • Source
    Biochemical Pharmacology - BIOCHEM PHARMACOL. 01/2009; 78(7):903-903.