Invariant Delineation of Nuclear Architecture in Glioblastoma Multiforme for Clinical and Molecular Association

IEEE transactions on medical imaging 12/2012; DOI: 10.1109/TMI.2012.2231420
Source: PubMed

ABSTRACT Automated analysis of whole mount tissue sections can provide insights into tumor subtypes and the underlying molecular basis of neoplasm. However, since tumor sections are collected from different laboratories, inherent technical and biological variations impede analysis for very large datasets such as The Cancer Genome Atlas (TCGA). Our objective is to characterize tumor histopathology, through the delineation of the nuclear regions, from hematoxylin and eosin (H&E) stained tissue sections. Such a representation can then be mined for intrinsic subtypes across a large dataset for prediction and molecular association. Furthermore, nuclear segmentation is formulated within a multi-reference graph framework with geodesic constraints, which enables computation of multidimensional representations, on a cell-by-cell basis, for functional enrichment and bioinformatics analysis. Here, we present a novel method, Multi-Reference Graph Cut (MRGC), for nuclear segmentation that overcomes technical variations associated with sample preparation by incorporating prior knowledge from manually annotated reference images and local image features. The proposed approach has been validated on manually annotated samples and then applied to a dataset of 377 Glioblastoma Multiforme (GBM) whole slide images from 146 patients. For the GBM cohort, multidimensional representation of the nuclear features and their organization have identified (i) statistically significant subtypes based on several morphometric indices, (ii) whether each subtype can be predictive or not, and (iii) that the molecular correlates of predictive subtypes are consistent with the literature. Data and intermediaries for a number of tumor types (GBM, low grade glial, and kidney renal clear carcinoma) are available at: for correlation with TCGA molecular data. The website also provides an interface for panning and zooming of whole mount tissue sections with/without overlaid segmentation results for quality control.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Histology is the microscopic inspection of plant or animal tissue. It is a critical component in diagnostic medicine and a tool for studying the pathogenesis and biology of processes such as cancer and embryogenesis. Tissue processing for histology has become increasingly automated, drastically increasing the speed at which histology labs can produce tissue slides for viewing. Another trend is the digitization of these slides, allowing them to be viewed on a computer rather than through a microscope. Despite these changes, much of the routine analysis of tissue sections remains a painstaking, manual task that can only be completed by highly trained pathologists at a high cost per hour. There is, therefore, a niche for image analysis methods that can automate some aspects of this analysis. These methods could also automate tasks that are prohibitively time-consuming for humans, e.g., discovering new disease markers from hundreds of whole-slide images (WSIs) or precisely quantifying tissues within a tumor.
    IEEE Signal Processing Magazine 01/2015; 32(1):78-87. DOI:10.1109/MSP.2014.2346443 · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Image-based classification of histology sections, in terms of distinct components (e.g., tumor, stroma, normal), provides a series of indices for histology composition (e.g., the percentage of each distinct components in histology sections), and enables the study of nuclear properties within each component. Furthermore, the study of these indices, constructed from each whole slide image in a large cohort, has the potential to provide predictive models of clinical outcome. For example, correlations can be established between the constructed indices and the patients’ survival information at cohort level, which is a fundamental step towards personalized medicine. However, performance of the existing techniques is hindered as a result of large technical variations (e.g., variations of color/textures in tissue images due to non-standard experimental protocols) and biological heterogeneities (e.g., cell type, cell state) that are always present in a large cohort. We propose a system that automatically learns a series of dictionary elements for representing the underlying spatial distribution using stacked predictive sparse decomposition. The learned representation is then fed into the spatial pyramid matching framework with a linear support vector machine classifier. The system has been evaluated for classification of distinct histological components for two cohorts of tumor types. Throughput has been increased by using of graphical processing unit (GPU), and evaluation indicates a superior performance results, compared with previous research.
    International Journal of Computer Vision 05/2015; 113(1):3-18. DOI:10.1007/s11263-014-0790-9 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Cancer Genome Atlas (TCGA) is a public funded project that aims to catalogue and discover major cancer-causing genomic alterations to create a comprehensive "atlas" of cancer genomic profiles. So far, TCGA researchers have analysed large cohorts of over 30 human tumours through large-scale genome sequencing and integrated multi-dimensional analyses. Studies of individual cancer types, as well as comprehensive pan-cancer analyses have extended current knowledge of tumorigenesis. A major goal of the project was to provide publicly available datasets to help improve diagnostic methods, treatment standards, and finally to prevent cancer. This review discusses the current status of TCGA Research Network structure, purpose, and achievements.
    Contemporary Oncology / Wspólczesna Onkologia 01/2015; 19(1A):A68-77. DOI:10.5114/wo.2014.47136 · 0.22 Impact Factor