Invariant Delineation of Nuclear Architecture in Glioblastoma Multiforme for Clinical and Molecular Association

IEEE transactions on medical imaging 12/2012; DOI: 10.1109/TMI.2012.2231420
Source: PubMed

ABSTRACT Automated analysis of whole mount tissue sections can provide insights into tumor subtypes and the underlying molecular basis of neoplasm. However, since tumor sections are collected from different laboratories, inherent technical and biological variations impede analysis for very large datasets such as The Cancer Genome Atlas (TCGA). Our objective is to characterize tumor histopathology, through the delineation of the nuclear regions, from hematoxylin and eosin (H&E) stained tissue sections. Such a representation can then be mined for intrinsic subtypes across a large dataset for prediction and molecular association. Furthermore, nuclear segmentation is formulated within a multi-reference graph framework with geodesic constraints, which enables computation of multidimensional representations, on a cell-by-cell basis, for functional enrichment and bioinformatics analysis. Here, we present a novel method, Multi-Reference Graph Cut (MRGC), for nuclear segmentation that overcomes technical variations associated with sample preparation by incorporating prior knowledge from manually annotated reference images and local image features. The proposed approach has been validated on manually annotated samples and then applied to a dataset of 377 Glioblastoma Multiforme (GBM) whole slide images from 146 patients. For the GBM cohort, multidimensional representation of the nuclear features and their organization have identified (i) statistically significant subtypes based on several morphometric indices, (ii) whether each subtype can be predictive or not, and (iii) that the molecular correlates of predictive subtypes are consistent with the literature. Data and intermediaries for a number of tumor types (GBM, low grade glial, and kidney renal clear carcinoma) are available at: for correlation with TCGA molecular data. The website also provides an interface for panning and zooming of whole mount tissue sections with/without overlaid segmentation results for quality control.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Histology is the microscopic inspection of plant or animal tissue. It is a critical component in diagnostic medicine and a tool for studying the pathogenesis and biology of processes such as cancer and embryogenesis. Tissue processing for histology has become increasingly automated, drastically increasing the speed at which histology labs can produce tissue slides for viewing. Another trend is the digitization of these slides, allowing them to be viewed on a computer rather than through a microscope. Despite these changes, much of the routine analysis of tissue sections remains a painstaking, manual task that can only be completed by highly trained pathologists at a high cost per hour. There is, therefore, a niche for image analysis methods that can automate some aspects of this analysis. These methods could also automate tasks that are prohibitively time-consuming for humans, e.g., discovering new disease markers from hundreds of whole-slide images (WSIs) or precisely quantifying tissues within a tumor.
    IEEE Signal Processing Magazine 01/2015; 32(1):78-87. DOI:10.1109/MSP.2014.2346443 · 4.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Membrane-bound macromolecules play an important role in tissue architecture and cell-cell communication, and is regulated by almost one-third of the genome. At the optical scale, one group of membrane proteins expresses themselves as linear structures along the cell surface boundaries, while others are sequestered; and this paper targets the former group. Segmentation of these membrane proteins on a cell-by-cell basis enables the quantitative assessment of localization for comparative analysis. However, such membrane proteins typically lack continuity, and their intensity distributions are often very heterogeneous; moreover, nuclei can form large clump, which further impedes the quantification of membrane signals on a cell-by-cell basis. To tackle these problems, we introduce a three-step process to (i) regularize the membrane signal through iterative tangential voting, (ii) constrain the location of surface proteins by nuclear features, where clumps of nuclei are segmented through a delaunay triangulation approach, and (iii) assign membrane-bound macromolecules to individual cells through an application of multi-phase geodesic level-set. We have validated our method using both synthetic data and a dataset of 200 images, and are able to demonstrate the efficacy of our approach with superior performance.
    Pattern Recognition 10/2014; 48(3). DOI:10.1016/j.patcog.2014.10.005 · 2.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Cancer Genome Atlas (TCGA) is a public funded project that aims to catalogue and discover major cancer-causing genomic alterations to create a comprehensive "atlas" of cancer genomic profiles. So far, TCGA researchers have analysed large cohorts of over 30 human tumours through large-scale genome sequencing and integrated multi-dimensional analyses. Studies of individual cancer types, as well as comprehensive pan-cancer analyses have extended current knowledge of tumorigenesis. A major goal of the project was to provide publicly available datasets to help improve diagnostic methods, treatment standards, and finally to prevent cancer. This review discusses the current status of TCGA Research Network structure, purpose, and achievements.

Full-text (3 Sources)

Available from
May 22, 2014

View other sources