Article

MEK inhibition exhibits efficacy in human and mouse neurofibromatosis tumors.

The Journal of clinical investigation (Impact Factor: 13.77). 12/2012; DOI: 10.1172/JCI60578
Source: PubMed

ABSTRACT Neurofibromatosis type 1 (NF1) patients develop benign neurofibromas and malignant peripheral nerve sheath tumors (MPNST). These incurable peripheral nerve tumors result from loss of NF1 tumor suppressor gene function, causing hyperactive Ras signaling. Activated Ras controls numerous downstream effectors, but specific pathways mediating the effects of hyperactive Ras in NF1 tumors are unknown. We performed cross-species transcriptome analyses of mouse and human neurofibromas and MPNSTs and identified global negative feedback of genes that regulate Ras/Raf/MEK/ERK signaling in both species. Nonetheless, ERK activation was sustained in mouse and human neurofibromas and MPNST. We used a highly selective pharmacological inhibitor of MEK, PD0325901, to test whether sustained Ras/Raf/MEK/ERK signaling contributes to neurofibroma growth in a neurofibromatosis mouse model (Nf1fl/fl;Dhh-Cre) or in NF1 patient MPNST cell xenografts. PD0325901 treatment reduced aberrantly proliferating cells in neurofibroma and MPNST, prolonged survival of mice implanted with human MPNST cells, and shrank neurofibromas in more than 80% of mice tested. Our data demonstrate that deregulated Ras/ERK signaling is critical for the growth of NF1 peripheral nerve tumors and provide a strong rationale for testing MEK inhibitors in NF1 clinical trials.

2 Followers
 · 
156 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: With the emergence of high-throughput discovery platforms, robust preclinical small-animal models, and efficient clinical trial pipelines, it is becoming possible to envision a time when the treatment of human neurologic diseases will become personalized. The emergence of precision medicine will require the identification of subgroups of patients most likely to respond to specific biologically based therapies. This stratification only becomes possible when the determinants that contribute to disease heterogeneity become more fully elucidated. This review discusses the defining factors that underlie disease heterogeneity relevant to the potential for individualized brain tumor (optic pathway glioma) treatments arising in the common single-gene cancer predisposition syndrome, neurofibromatosis type 1 (NF1). In this regard, NF1 is posited as a model genetic condition to establish a workable paradigm for actualizing precision therapeutics for other neurologic disorders.
    Neurology 06/2014; 83(5). DOI:10.1212/WNL.0000000000000652 · 8.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neurofibromatosis type 1 (NF1) is a genetic disorder that predisposes affected individuals to formation of benign neurofibromas, peripheral nerve tumors that can be associated with significant morbidity. Loss of the NF1 Ras-GAP protein causes increased Ras-GTP, and we previously found that inhibiting MEK signaling downstream of Ras can shrink established neurofibromas in a genetically engineered murine model. We studied effects of MEK inhibition using 1.5 mg/kg/day PD-0325901 prior to neurofibroma onset in the Nf1 (flox/flox) ; Dhh-Cre mouse model. We also treated mice with established tumors at 0.5 and 1.5 mg/kg/day doses of PD-0325901. We monitored tumor volumes using MRI and volumetric measurements, and measured pharmacokinetic and pharmacodynamic endpoints. Early administration significantly delayed neurofibroma development as compared to vehicle controls. When treatment was discontinued neurofibromas grew, but no rebound effect was observed and neurofibromas remained significantly smaller than controls. Low dose treatment of mice with PD-0325901 resulted in neurofibroma shrinkage equivalent to that observed at higher doses. Tumor cell proliferation decreased, although less than at higher doses with drug. Tumor blood vessels per area correlated with tumor shrinkage. Neurofibroma development was not prevented by MEK inhibition, beginning at 1 month of age, but tumor size was controlled by early treatment. Moreover, treatment with PD-0325901 at very low doses may shrink neurofibromas while minimizing toxicity. These studies highlight how genetically engineered mouse models can guide clinical trial design. Pediatr Blood Cancer © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
    Pediatric Blood & Cancer 04/2015; DOI:10.1002/pbc.25546 · 2.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cerebellar development is regulated by a coordinated spatiotemporal interplay between granule neuron progenitors (GNPs), Purkinje neurons, and glia. Abnormal development can trigger motor deficits, and more recent data indicate important roles in aspects of memory, behavior, and autism spectrum disorders (ASDs). Germline mutation in the NF1 tumor suppressor gene underlies Neurofibromatosis type 1, a complex disease that enhances susceptibility to certain cancers and neurological disorders, including intellectual deficits and ASD. The NF1 gene encodes for neurofibromin, a RAS GTPase-activating protein, and thus negatively regulates the RAS signaling pathway. Here, using mouse models to direct conditional NF1 ablation in either embryonic cerebellar progenitors or neonatal GNPs, we show that neurofibromin is required for appropriate development of cerebellar folia layering and structure. Remarkably, neonatal administration of inhibitors of the ERK pathway reversed the morphological defects. Thus, our finding
    Genes & Development 11/2014; 28(21-21):2407-2420. DOI:10.1101/gad.246603.114 · 12.64 Impact Factor