NK cells controlling virus-specific T cells: Rheostats for acute vs. persistent infections

Department of Pathology and Program for Immunology and Virology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA. Electronic address: .
Virology (Impact Factor: 3.28). 01/2013; 435(1):37-45. DOI: 10.1016/j.virol.2012.10.005
Source: PubMed

ABSTRACT Viral infections characteristically induce a cytokine-driven activated natural killer (NK) cell response that precedes an antigen-driven T cell response. These NK cells can restrain some but not all viral infections by attacking virus-infected cells and can thereby provide time for an effective T cell response to mobilize. Recent studies have revealed an additional immunoregulatory role for the NK cells, where they inhibit the size and functionality of the T cell response, regardless of whether the viruses are themselves sensitive to NK cells. This subsequent change in T cell dynamics can alter patterns of immunopathology and persistence and implicates NK cells as rheostat-like regulators of persistent infections.

Download full-text


Available from: Stephen N Waggoner, Jun 30, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although robust and highly effective anti-viral T cells contribute to the clearance of many acute infections, viral persistence is associated with the development of functionally inferior, exhausted, T cell responses. Exhaustion develops in a step-wise and progressive manner, ranges in severity, and can culminate in the deletion of the anti-viral T cells. This disarming of the response is consequential as it compromises viral control and potentially serves to dampen immune-mediated damage. Exhausted T cells are unable to elaborate typical anti-viral effector functions. They are characterized by the sustained upregulation of inhibitory receptors and display a gene expression profile that distinguishes them from prototypic effector and memory T cell populations. In this review we discuss the properties of exhausted T cells; the virological and immunological conditions that favor their development; the cellular and molecular signals that sustain the exhausted state; and strategies for preventing and reversing exhaustion to favor viral control. Copyright © 2014 Elsevier Inc. All rights reserved.
    Virology 01/2015; 361. DOI:10.1016/j.virol.2014.12.033 · 3.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Killer Immunoglobulin-like Receptors (KIR) are a family of receptors expressed on natural killer (NK) and T-cell subsets. KIR3DL1 is a highly polymorphic receptor that binds to groups of HLAA and HLA-B allotypes that express the Bw4 epitope. The variation in KIR3DL1 allotypes manifests at a number of levels. Most dramatically, a common allelic variant encodes an activating rather than an inhibitory receptor (KIR3DS1). In addition, sequence variants can affect both the frequency of expression within the NK cell population and the intensity of expression on a given cell. KIR3DL1 polymorphism also influences the interaction with HLA-Bw4 molecules, due to contacts with the HLA molecule itself and sensitivity to the presented peptide. A body of evidence from genetic association studies supports the biological significance not only of the interaction of KIR3DL1 with HLA-Bw4 but also the functional variation seen with different KIR3DL1 and HLA allotypes. In this review, we discuss our current understanding of KIR3DL1 function and our recent insights from the structure of the KIR3DL1 in complex with HLA. In addition, we will summarize our current understanding of KIR3DS1, including its ligand specificity and its role in immune responses.
    Critical Reviews in Immunology 01/2013; 33(3):203-18. DOI:10.1615/CritRevImmunol.2013007409 · 3.89 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chronic hepatitis B virus (HBV) and hepatitis C virus (HCV) infections account for 57% of cases of liver cirrhosis and 78% of cases of primary liver cancer worldwide and cause a million deaths per year. Although HBV and HCV differ in their genome structures, replication strategies and life cycles, they have common features, including their noncytopathic nature and their capacity to induce chronic liver disease, which is thought to be immune mediated. However, the rate of disease progression from chronic hepatitis to cirrhosis varies greatly among infected individuals, and the factors that regulate it are largely unknown. This review summarizes our current understanding of the roles of antigen-specific and nonspecific immune cells in the pathogenesis of chronic hepatitis B and C and discusses recent findings that identify natural killer cells as regulators of T cell function and liver inflammation.
    Nature medicine 07/2013; 19(7):859-68. DOI:10.1038/nm.3251 · 28.05 Impact Factor