Cardiovascular Events and Intensity of Treatment in Polycythemia Vera

The authors' affiliations are listed in the Appendix.
New England Journal of Medicine (Impact Factor: 55.87). 12/2012; 368(1). DOI: 10.1056/NEJMoa1208500
Source: PubMed


Current treatment recommendations for patients with polycythemia vera call for maintaining a hematocrit of less than 45%, but this therapeutic strategy has not been tested in a randomized clinical trial.

We randomly assigned 365 adults with JAK2-positive polycythemia vera who were being treated with phlebotomy, hydroxyurea, or both to receive either more intensive treatment (target hematocrit, <45%) (low-hematocrit group) or less intensive treatment (target hematocrit, 45 to 50%) (high-hematocrit group). The primary composite end point was the time until death from cardiovascular causes or major thrombotic events. The secondary end points were cardiovascular events, cardiovascular hospitalizations, incidence of cancer, progression to myelofibrosis, myelodysplasia or leukemic transformation, and hemorrhage. An intention-to-treat analysis was performed.

After a median follow-up of 31 months, the primary end point was recorded in 5 of 182 patients in the low-hematocrit group (2.7%) and 18 of 183 patients in the high-hematocrit group (9.8%) (hazard ratio in the high-hematocrit group, 3.91; 95% confidence interval [CI], 1.45 to 10.53; P=0.007). The primary end point plus superficial-vein thrombosis occurred in 4.4% of patients in the low-hematocrit group, as compared with 10.9% in the high-hematocrit group (hazard ratio, 2.69; 95% CI, 1.19 to 6.12; P=0.02). Progression to myelofibrosis, myelodysplasia or leukemic transformation, and bleeding were observed in 6, 2, and 2 patients, respectively, in the low-hematocrit group, as compared with 2, 1, and 5 patients, respectively, in the high-hematocrit group. There was no significant between-group difference in the rate of adverse events.

In patients with polycythemia vera, those with a hematocrit target of less than 45% had a significantly lower rate of cardiovascular death and major thrombosis than did those with a hematocrit target of 45 to 50%. (Funded by the Italian Medicines Agency and others; number, NCT01645124, and EudraCT number, 2007-006694-91.).

Download full-text


Available from: Emanuele Angelucci, May 10, 2014
41 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Disease overview: Polycythemia vera (PV) and essential thrombocythemia (ET) are myeloproliferative neoplasms, respectively characterized by erythrocytosis and thrombocytosis. Other disease features include leukocytosis, splenomegaly, thrombosis, bleeding, microcirculatory symptoms, pruritus, and risk of leukemic or fibrotic transformation. Diagnosis: PV is defined by a JAK2 mutation, whose absence, combined with normal or increased serum erythropoietin level, makes the diagnosis unlikely. Differential diagnosis in ET includes reactive thrombocytosis, chronic myeloid leukemia, and prefibrotic myelofibrosis. Janus kinase 2 (JAK2), calreticulin (CALR), or myeloproliferative leukemia virus oncogene (MPL) mutations occur in approximately 55%, 25%, and 3% of ET patients, respectively. The same molecular markers are also present in prefibrotic myelofibrosis, which needs to be morphologically distinguished from ET. Survival and leukemic/fibrotic transformation: Median survivals are ∼14 years for PV and 20 years for ET; the corresponding values for younger patients are 24 and 33 years. Life-expectancy in ET is inferior to the control population. JAK2/CALR mutational status does not affect survival in ET. Risk factors for survival in ET and PV include advanced age, leukocytosis, and thrombosis. Leukemic transformation rates at 20 years are estimated at <10% for PV and 5% for ET; fibrotic transformation rates are slightly higher. Thrombosis risk stratification: Current risk stratification in PV and ET is designed to estimate the likelihood of recurrent thrombosis: high-risk is defined by the presence of age >60 years or presence of thrombosis history; low-risk is defined by the absence of both of these two risk factors. Recent data consider JAK2V617F and cardiovascular risk factors as additional risk factors. Presence of extreme thrombocytosis might be associated with acquired von Willebrand syndrome (AvWS) and, therefore, risk of bleeding. Risk-adapted therapy: The main goal of therapy in PV and ET is to prevent thrombohemorrhagic complications. In low risk patients, this is accomplished by the use of low-dose aspirin and phlebotomy (hematocrit target <45%) in PV. In high risk (for thrombosis) patients, treatment with hydroxyurea is additionally recommended. Treatment with busulfan or interferon-α is usually effective in hydroxyurea failures and the additional value of JAK inhibitor therapy in such cases is limited. Screening for AvWS is recommended before administrating aspirin, in the presence of extreme thrombocytosis.
    American Journal of Hematology 03/2012; 87(3):285-93. DOI:10.1002/ajh.23135 · 3.80 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Marchioli et al.(1) report in the Journal that a hematocrit target of less than 45% for therapeutic phlebotomy reduces the risk of thrombosis in patients with polycythemia vera. In the genomic era, readers may question attention given to a measurement as mundane as the hematocrit, but this study resolves a half-century of debate about the role of phlebotomy in polycythemia vera and has ramifications for diagnosis and management. Polycythemia vera is a unique myeloproliferative disorder in which there is overproduction of morphologically normal erythrocytes, granulocytes, and platelets, a phenotype that is caused by a mutation (V617F) in JAK2, encoding . . .
    New England Journal of Medicine 12/2012; 368(1). DOI:10.1056/NEJMe1213283 · 55.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A 44-year-old man presented to the emergency department with chest pain that had started 1 hour earlier and had awakened him from sleep. The pain was severe, substernal, burning, radiating to the left arm, and accompanied by nausea and vomiting.
    New England Journal of Medicine 01/2013; 368(1):65-71. DOI:10.1056/NEJMcps1202256 · 55.87 Impact Factor
Show more