Article

Regulation of kinetochore recruitment of two essential mitotic spindle checkpoint proteins by Mps1 phosphorylation.

Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA.
Molecular biology of the cell (Impact Factor: 5.98). 11/2008; 20(1):10-20. DOI:10.1091/mbc.E08-03-0324
Source: PubMed

ABSTRACT Mps1 is a protein kinase that plays essential roles in spindle checkpoint signaling. Unattached kinetochores or lack of tension triggers recruitment of several key spindle checkpoint proteins to the kinetochore, which delays anaphase onset until proper attachment or tension is reestablished. Mps1 acts upstream in the spindle checkpoint signaling cascade, and kinetochore targeting of Mps1 is required for subsequent recruitment of Mad1 and Mad2 to the kinetochore. The mechanisms that govern recruitment of Mps1 or other checkpoint proteins to the kinetochore upon spindle checkpoint activation are incompletely understood. Here, we demonstrate that phosphorylation of Mps1 at T12 and S15 is required for Mps1 recruitment to the kinetochore. Mps1 kinetochore recruitment requires its kinase activity and autophosphorylation at T12 and S15. Mutation of T12 and S15 severely impairs its kinetochore association and markedly reduces recruitment of Mad2 to the kinetochore. Our studies underscore the importance of Mps1 autophosphorylation in kinetochore targeting and spindle checkpoint signaling.

0 0
 · 
0 Bookmarks
 · 
93 Views
  • [show abstract] [hide abstract]
    ABSTRACT: The effect of UV irradiation on replicating cells during interphase has been studied extensively. However, how the mitotic cell responds to UV irradiation is less well defined. Herein, we found that UV-C irradiation (254 nm) increases recruitment of the spindle checkpoint proteins Mps1 and Mad2 to the kinetochore during metaphase, suggesting that the spindle assembly checkpoint (SAC) is reactivated. In accordance with this, cells exposed to UV-C showed delayed mitotic progression, characterized by a prolonged chromosomal alignment during metaphase. UV-C irradiation also induced the DNA damage response and caused a significant accumulation of γ-H2AX on mitotic chromosomes. Unexpectedly, the mitotic delay upon UV-C irradiation is not due to the DNA damage response but to the relocation of Mps1 to the kinetochore. Further, we found that UV-C irradiation activates Aurora B kinase. Importantly, the kinase activity of Aurora B is indispensable for full recruitment of Mps1 to the kinetochore during both prometaphase and metaphase. Taking these findings together, we propose that UV irradiation delays mitotic progression by evoking the Aurora B-Mps1 signaling cascade, which exerts its role through promoting the association of Mps1 with the kinetochore in metaphase.
    Cell cycle (Georgetown, Tex.) 03/2013; 12(8). · 5.24 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The spindle assembly checkpoint (SAC) is a surveillance system that ensures the timely and accurate transmission of the genetic material to offspring. The process implies kinetochore targeting of the mitotic kinases Bub1, BubR1 and Mps1 which is mediated by the N-terminus of each kinase. Here, we report the 1.8 Å structure of the tetratricopeptide repeat (TPR) domain in the N-terminal region of human Mps1. The structure reveals an overall high similarity to the TPR motif of the mitotic checkpoint kinases Bub1 and BubR1, and a number of unique features that include the absence of the binding site for the kinetochore structural component KNL1, and determinants of dimerization. Moreover, we show that a stretch of amino acids at the very N-terminus of Mps1 is required for dimer formation, and that interfering with dimerization results in mislocalization and misregulation of kinase activity. Our results provide important insight into the molecular details of Mps1 mitotic functions including features that dictate substrate selectivity and kinetochore docking.
    Biochemical Journal 10/2012; · 4.65 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The mitotic checkpoint ensures correct chromosome segregation by delaying cell cycle progression until all kinetochores have attached to the mitotic spindle. In this paper, we show that the mitotic checkpoint kinase MPS1 contains an N-terminal localization module, organized in an N-terminal extension (NTE) and a tetratricopeptide repeat (TPR) domain, for which we have determined the crystal structure. Although the module was necessary for kinetochore localization of MPS1 and essential for the mitotic checkpoint, the predominant kinetochore binding activity resided within the NTE. MPS1 localization further required HEC1 and Aurora B activity. We show that MPS1 localization to kinetochores depended on the calponin homology domain of HEC1 but not on Aurora B-dependent phosphorylation of the HEC1 tail. Rather, the TPR domain was the critical mediator of Aurora B control over MPS1 localization, as its deletion rendered MPS1 localization insensitive to Aurora B inhibition. These data are consistent with a model in which Aurora B activity relieves a TPR-dependent inhibitory constraint on MPS1 localization.
    The Journal of Cell Biology 04/2013; · 10.82 Impact Factor

Full-text (2 Sources)

View
10 Downloads
Available from
Sep 7, 2013