Article

FGFR3 promotes synchondrosis closure and fusion of ossification centers through the MAPK pathway.

Department of Orthopaedics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
Human Molecular Genetics (Impact Factor: 6.68). 11/2008; 18(2):227-40. DOI: 10.1093/hmg/ddn339
Source: PubMed

ABSTRACT Activating mutations in FGFR3 cause achondroplasia and thanatophoric dysplasia, the most common human skeletal dysplasias. In these disorders, spinal canal and foramen magnum stenosis can cause serious neurologic complications. Here, we provide evidence that FGFR3 and MAPK signaling in chondrocytes promote synchondrosis closure and fusion of ossification centers. We observed premature synchondrosis closure in the spine and cranial base in human cases of homozygous achondroplasia and thanatophoric dysplasia as well as in mouse models of achondroplasia. In both species, premature synchondrosis closure was associated with increased bone formation. Chondrocyte-specific activation of Fgfr3 in mice induced premature synchondrosis closure and enhanced osteoblast differentiation around synchondroses. FGF signaling in chondrocytes increases Bmp ligand mRNA expression and decreases Bmp antagonist mRNA expression in a MAPK-dependent manner, suggesting a role for Bmp signaling in the increased bone formation. The enhanced bone formation would accelerate the fusion of ossification centers and limit the endochondral bone growth. Spinal canal and foramen magnum stenosis in heterozygous achondroplasia patients, therefore, may occur through premature synchondrosis closure. If this is the case, then any growth-promoting treatment for these complications of achondroplasia must precede the timing of the synchondrosis closure.

0 Bookmarks
 · 
116 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: FGFR3 gain-of-function mutations lead to both chondrodysplasias and craniosynostoses. Achondroplasia (ACH), the most frequent dwarfism, is due to a FGFR3 activating mutation which results in impaired endochondral ossification. The effects of the mutation on membranous ossification are unknown. Fgfr3(Y367C/+) mice mimicking ACH and craniofacial analysis of patients with ACH and FGFR3-related craniosynostoses provide an opportunity to address this issue. Studying the calvaria and skull base, we observed abnormal cartilage and premature fusion of the synchondroses leading to modifications of foramen magnum shape and size in Fgfr3(Y367C/+) mice, ACH and FGFR3-related craniosynostoses patients. Partial premature fusion of the coronal sutures and non ossified gaps in frontal bones were also present in Fgfr3(Y367C/+) mice and ACH patients. Our data provide strong support that, not only endochondral ossification but also membranous ossification is severely affected in ACH. Demonstration of the impact of FGFR3 mutations on craniofacial development should initiate novel pharmacological and surgical therapeutic approaches.
    Human Molecular Genetics 01/2014; · 6.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fibroblast growth factors (FGFs) and their receptors (FGFRs) play significant roles in vertebrate organogenesis and morphogenesis. FGFR3 is a negative regulator of chondrogenesis and multiple mutations with constitutive activity of FGFR3 result in achondroplasia, one of the most common dwarfisms in humans, but the molecular mechanism remains elusive. In this study, we found that chondrocyte-specific deletion of BMP type I receptor a (Bmpr1a) rescued the bone overgrowth phenotype observed in Fgfr3 deficient mice by reducing chondrocyte differentiation. Consistently, using in vitro chondrogenic differentiation assay system, we demonstrated that FGFR3 inhibited BMPR1a-mediated chondrogenic differentiation. Furthermore, we showed that FGFR3 hyper-activation resulted in impaired BMP signaling in chondrocytes of mouse growth plates. We also found that FGFR3 inhibited BMP-2- or constitutively activated BMPR1-induced phosphorylation of Smads through a mechanism independent of its tyrosine kinase activity. We found that FGFR3 facilitate BMPR1a to degradation through Smurf1-mediated ubiquitination pathway. We demonstrated that down-regulation of BMP signaling by BMPR1 inhibitor dorsomorphin led to the retardation of chondrogenic differentiation, which mimicks the effect of FGF-2 on chondrocytes and BMP-2 treatment partially rescued the retarded growth of cultured bone rudiments from thanatophoric dysplasia type II mice. Our findings reveal that FGFR3 promotes the degradation of BMPR1a, which plays an important role in the pathogenesis of FGFR3-related skeletal dysplasia.
    Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 07/2014; · 5.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A growing number of studies have been showing that dietary probiotics can exert beneficial health effects in both humans and animals. We previously demonstrated that dietary supplementation with Lactobacillus rhamnosus - a component of the human gut microflora - enhances reproduction, larval development, and the biomineralization process in Danio rerio (zebrafish). The aim of this study was to identify the pathways affected by L. rhamnosus during zebrafish larval development. Our morphological and histochemical findings show that L. rhamnosus accelerates bone deposition through stimulation of the expression of key genes involved in ossification, e.g. runt-related transcription factor 2 (runx2), Sp7 transcription factor (sp7), matrix Gla protein (mgp), and bone gamma-carboxyglutamate (gla) protein (bglap) as well as through inhibition of sclerostin (sost), a bone formation inhibitor. Western blot analysis of mitogen-activated protein kinase 1 and 3-(Mapk1 and Mapk3), which are involved in osteoblast and osteocyte differentiation, documented an increase in Mapk1 16 days post fertilization (dpf) and of Mapk3 23 dpf in individuals receiving L. rhamnosus supplementation. Interestingly, a reduction of sost detected in the same individuals suggests that the probiotic may help treat bone disorders.
    PLoS ONE 01/2013; 8(12):e83155. · 3.53 Impact Factor

Full-text

Download
0 Downloads
Available from