Article

RNF4-Dependent Hybrid SUMO-Ubiquitin Chains Are Signals for RAP80 and Thereby Mediate the Recruitment of BRCA1 to Sites of DNA Damage.

1Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA.
Science Signaling (Impact Factor: 7.65). 12/2012; 5(253):ra88. DOI: 10.1126/scisignal.2003485
Source: PubMed

ABSTRACT The DNA repair function of the breast cancer susceptibility protein BRCA1 depends in part on its interaction with RAP80, which targets BRCA1 to DNA double-strand breaks (DSBs) through recognition of K63-linked polyubiquitin chains. The localization of BRCA1 to DSBs also requires sumoylation. We demonstrated that, in addition to having ubiquitin-interacting motifs, RAP80 also contains a SUMO-interacting motif (SIM) that is critical for recruitment to DSBs. In combination with the ubiquitin-binding activity of RAP80, this SIM enabled RAP80 to bind with nanomolar affinity to hybrid chains consisting of ubiquitin conjugated to SUMO. Furthermore, RNF4, a SUMO-targeted ubiquitin E3 ligase that synthesizes hybrid SUMO-ubiquitin chains, localized to DSBs and was critical for the recruitment of RAP80 and BRCA1 to sites of DNA damage. Our findings, therefore, connect ubiquitin- and SUMO-dependent DSB recognition, revealing that RNF4-synthesized hybrid SUMO-ubiquitin chains are recognized by RAP80 to promote BRCA1 recruitment and DNA repair.

0 Followers
 · 
108 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: SLX4, a coordinator of multiple DNA structure-specific endonucleases, is important for several DNA repair pathways. Noncovalent interactions of SLX4 with ubiquitin are required for localizing SLX4 to DNA interstrand crosslinks (ICLs), yet how SLX4 is targeted to other functional contexts remains unclear. Here, we show that SLX4 binds SUMO-2/3 chains via SUMO-interacting motifs (SIMs). The SIMs of SLX4 are dispensable for ICL repair but important for processing CPT-induced replication intermediates, suppressing fragile site instability, and localizing SLX4 to ALT telomeres. The localization of SLX4 to laser-induced DNA damage also requires the SIMs, as well as DNA end resection, UBC9, and MDC1. Furthermore, the SUMO binding of SLX4 enhances its interaction with specific DNA-damage sensors or telomere-binding proteins, including RPA, MRE11-RAD50-NBS1, and TRF2. Thus, the interactions of SLX4 with SUMO and ubiquitin increase its affinity for factors recognizing different DNA lesions or telomeres, helping to direct the SLX4 complex in distinct functional contexts. Copyright © 2015 Elsevier Inc. All rights reserved.
    Molecular Cell 12/2014; 57(1). DOI:10.1016/j.molcel.2014.11.015 · 14.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Failure of accurate DNA damage sensing and repair mechanisms manifests as a variety of human diseases, including neurodegenerative disorders, immunodeficiency, infertility and cancer. The accuracy and efficiency of DNA damage detection and repair, collectively termed the DNA damage response (DDR), requires the recruitment and subsequent post-translational modification (PTM) of a complex network of proteins. Ubiquitin and the ubiquitin-like protein (UBL) SUMO have established roles in regulating the cellular response to DNA double-strand breaks (DSBs). A role for other UBLs, such as NEDD8, is also now emerging. This article provides an overview of the DDR, discusses our current understanding of the process and function of PTM by ubiquitin and NEDD8, and reviews the literature surrounding the role of ubiquitylation and neddylation in DNA repair processes, focusing particularly on DNA DSB repair.
    Open Biology 04/2015; 5(4). DOI:10.1098/rsob.150018 · 4.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sumoylation has important roles during DNA damage repair and responses. Recent broad-scope and substrate-based studies have shed light on the regulation and significance of sumoylation during these processes. An emerging paradigm is that sumoylation of many DNA metabolism proteins is controlled by DNA engagement. Such 'on-site modification' can explain low substrate modification levels and has important implications in sumoylation mechanisms and effects. New studies also suggest that sumoylation can regulate a process through an ensemble effect or via major substrates. Additionally, we describe new trends in the functional effects of sumoylation, such as bi-directional changes in biomolecule binding and multilevel coordination with other modifications. These emerging themes and models will stimulate our thinking and research in sumoylation and genome maintenance. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Trends in Biochemical Sciences 03/2015; 40(6). DOI:10.1016/j.tibs.2015.02.006 · 13.52 Impact Factor