Anti-Gluten Immune Response following Toxoplasma gondii Infection in Mice

Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America.
PLoS ONE (Impact Factor: 3.23). 11/2012; 7(11):e50991. DOI: 10.1371/journal.pone.0050991
Source: PubMed


Gluten sensitivity may affect disease pathogenesis in a subset of individuals who have schizophrenia, bipolar disorder or autism. Exposure to Toxoplasma gondii is a known risk factor for the development of schizophrenia, presumably through a direct pathological effect of the parasite on brain and behavior. A co-association of antibodies to wheat gluten and to T. gondii in individuals with schizophrenia was recently uncovered, suggesting a coordinated gastrointestinal means by which T. gondii and dietary gluten might generate an immune response. Here, we evaluated the connection between these infectious- and food-based antigens in mouse models. BALB/c mice receiving a standard wheat-based rodent chow were infected with T. gondii via intraperitoneal, peroral and prenatal exposure methods. Significant increases in the levels of anti-gluten IgG were documented in all infected mice and in offspring from chronically infected dams compared to uninfected controls (repetitive measures ANOVAs, two-tailed t-tests, all p≤0.00001). Activation of the complement system accompanied this immune response (p≤0.002-0.00001). Perorally-infected females showed higher levels of anti-gluten IgG than males (p≤0.009) indicating that T. gondii-generated gastrointestinal infection led to a significant anti-gluten immune response in a sex-dependent manner. These findings support a gastrointestinal basis by which two risk factors for schizophrenia, T. gondii infection and sensitivity to dietary gluten, might be connected to produce the immune activation that is becoming an increasingly recognized pathology of psychiatric disorders.

Download full-text


Available from: Geetha Kannan, Oct 06, 2015
22 Reads
  • Source
    • "and females (6.08%, 95% CI 2.23–9.93), which is different from previous reports that the females are more susceptible than males (Roberts et al. 1995, Severance et al. 2012, Minbaeva et al. 2013). Previous studies have shown that Budgerigars are relatively resistant to clinical toxoplasmosis (Dubey et al. 2002), while little is known of T. gondii infection in other species of Psittaciformes. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Toxoplasmosis, caused by the obligate intracellular protozoan parasite Toxoplasma gondii, has become a serious public health problem worldwide. T. gondii can infect almost all warm-blooded animals, including parrots. However, little is known of T. gondii infection in parrots in China. Antibodies against T. gondii in 311 parrots including 202 Budgerigars (Melopsittacus undulatus), 26 Lovebirds (Agapornis sp.), 22 Cockatiels (Nymphicus hollandicus), and 61 Alexandrine Parakeets (Psittacula eupatria) in the cities of Beijing and Weifang in north China were tested using the modified agglutination test (MAT). Twenty-six (8.36%) out of 311 serum samples were positive for T. gondii at the cutoff of 1:5. Among the four species, a higher seroprevalence of T. gondii was found in Cockatiels (13.64%, 95% confidence interval [CI] 0.00-27.98), although the difference was not statistically significant (p=0.61). Seropositivity rates against T. gondii in male parrots (10.43%, 95% CI 5.74-15.12) were not statistically different from that in female parrots (6.08%, 95% CI 2.23-9.93, p=0.17). The seropositivity of T. gondii in parrots from Weifang and Beijing was 11.11% (95% CI 6.13-16.09) and 5.70% (95% CI 2.08-9.31), respectively. The seroprevalence varied in parrots of different age groups, ranging from 5.71% (95% CI 1.27-10.15) to 13.00% (95% CI 6.41-19.69), however, the difference among age groups was not statistically significant (p=0.12). The seroprevalence of T. gondii infection in parrots in summer (11.63%, 95% CI 6.84-16.42) was significantly higher than in spring (4.32%, 95% CI 0.94-7.70, p=0.02). The results of the present survey indicated that parrots in China are exposed to T. gondii. To our knowledge, this is the first report of T. gondii seroprevalence in parrots in China.
    Vector borne and zoonotic diseases (Larchmont, N.Y.) 05/2014; 14(6). DOI:10.1089/vbz.2013.1522 · 2.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dietary intervention as a tool for maintaining and improving physical health and wellbeing is a widely researched and discussed topic. Speculation that diet may similarly affect mental health and wellbeing particularly in cases of psychiatric and behavioral symptomatology opens up various avenues for potentially improving quality of life. We examine evidence suggestive that a gluten-free (GF), casein-free (CF), or gluten- and casein-free diet (GFCF) can ameliorate core and peripheral symptoms and improve developmental outcome in some cases of autism spectrum conditions. Although not wholly affirmative, the majority of published studies indicate statistically significant positive changes to symptom presentation following dietary intervention. In particular, changes to areas of communication, attention, and hyperactivity are detailed, despite the presence of various methodological shortcomings. Specific characteristics of best- and non-responders to intervention have not been fully elucidated; neither has the precise mode of action for any universal effect outside of known individual cases of food-related co-morbidity. With the publication of controlled medium- and long-term group studies of a gluten- and casein-free diet alongside more consolidated biological findings potentially linked to intervention, the appearance of a possible diet-related autism phenotype seems to be emerging supportive of a positive dietary effect in some cases. Further debate on whether such dietary intervention should form part of best practice guidelines for autism spectrum conditions (ASCs) and onward representative of an autism dietary-sensitive enteropathy is warranted.
    Frontiers in Human Neuroscience 12/2012; 6:344. DOI:10.3389/fnhum.2012.00344 · 2.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Immune factors are implicated in normal brain development and in brain disorder pathogenesis. Pathogen infection and food antigen penetration across gastrointestinal barriers are means by which environmental factors might affect immune-related neurodevelopment. Here, we test if gastrointestinal inflammation is associated with schizophrenia and therefore, might contribute to bloodstream entry of potentially neurotropic milk and gluten exorphins and/or immune activation by food antigens. IgG antibodies to Saccharomyces cerevisiae (ASCA, a marker of intestinal inflammation), bovine milk casein, wheat-derived gluten, and 6 infectious agents were assayed. Cohort 1 included 193 with non-recent onset schizophrenia, 67 with recent onset schizophrenia and 207 non-psychiatric controls. Cohort 2 included 103 with first episode schizophrenia, 40 of whom were antipsychotic-naïve. ASCA markers were significantly elevated and correlated with food antigen antibodies in recent onset and non-recent onset schizophrenia compared to controls (p≤0.00001-0.004) and in unmedicated individuals with first episode schizophrenia compared to those receiving antipsychotics (p≤0.05-0.01). Elevated ASCA levels were especially evident in non-recent onset females (p≤0.009), recent onset males (p≤0.01) and in antipsychotic-naïve males (p≤0.03). Anti-food antigen antibodies were correlated to antibodies against Toxoplasma gondii, an intestinally-infectious pathogen, particularly in males with recent onset schizophrenia (p≤0.002). In conclusion, gastrointestinal inflammation is a relevant pathology in schizophrenia, appears to occur in the absence of but may be modified by antipsychotics, and may link food antigen sensitivity and microbial infection as sources of immune activation in mental illness.
    Schizophrenia Research 03/2012; 138(1):48-53. DOI:10.1016/j.schres.2012.02.025 · 3.92 Impact Factor
Show more