Article

A Phospholipase C-gamma 1-Independent, RasGRP1-ERK-Dependent Pathway Drives Lymphoproliferative Disease in Linker for Activation of T Cells-Y136F Mutant Mice

Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
The Journal of Immunology (Impact Factor: 5.36). 12/2012; 190(1). DOI: 10.4049/jimmunol.1201458
Source: PubMed

ABSTRACT Mice expressing a germline mutation in the phospholipase C-γ1-binding site of linker for activation of T cells (LAT) show progressive lymphoproliferation and ultimately die at 4-6 mo age. The hyperactivated T cells in these mice show defective TCR-induced calcium flux but enhanced Ras/ERK activation, which is critical for disease progression. Despite the loss of LAT-dependent phospholipase C-γ1 binding and activation, genetic analysis revealed RasGRP1, and not Sos1 or Sos2, to be the major Ras guanine exchange factor responsible for ERK activation and the lymphoproliferative phenotype in these mice. Analysis of isolated CD4(+) T cells from LAT-Y136F mice showed altered proximal TCR-dependent kinase signaling, which activated a Zap70- and LAT-independent pathway. Moreover, LAT-Y136F T cells showed ERK activation that was dependent on Lck and/or Fyn, protein kinase C-θ, and RasGRP1. These data demonstrate a novel route to Ras activation in vivo in a pathological setting.

0 Bookmarks
 · 
75 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Constitutive Ras signaling has been shown to augment IL-2 production, reverse anergy, and functionally replace many aspects of CD28 co-stimulation in CD4+ T cells. These data raise the possibility that introduction of active Ras into primary T cells might result in improved functionality in pathologic situations of T cell dysfunction, such as cancer or chronic viral infection. To test the biologic effects of active Ras in primary T cells, CD4+ T cells from Coxsackie-Adenovirus Receptor Transgenic mice were transduced with an adenovirus encoding active Ras. As expected, active Ras augmented IL-2 production in naive CD4+ T cells. However, when cells were cultured for 4 days under conditions to promote effector cell differentiation, active Ras inhibited the ability of CD4+ T cells to acquire a Th1 or Th2 effector cytokine profile. This differentiation defect was not due to deficient STAT4 or STAT6 activation by IL-12 or IL-4, respectively, nor was it associated with deficient induction of T-bet and GATA-3 expression. Impaired effector cytokine production in active Ras-transduced cells was associated with deficient demethylation of the IL-4 gene locus. Our results indicate that, despite augmenting acute activation of naïve T cells, constitutive Ras signaling inhibits the ability of CD4+ T cells to properly differentiate into Th1/Th2 effector cytokine-producing cells, in part by interfering with epigenetic modification of effector gene loci. Alternative strategies to potentiate Ras pathway signaling in T cells in a more regulated fashion should be considered as a therapeutic approach to improve immune responses in vivo.
    PLoS ONE 11/2014; 9(11):e112831. DOI:10.1371/journal.pone.0112831 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Phospholipase C-γ1 (PLC-γ1) is a key regulator of T cell receptor (TCR)-induced signaling. Activation of the TCR enhances PLC-γ1 enzymatic function, resulting in calcium influx and the activation of PKC family members and RasGRP. The current model is that phosphorylation of LAT tyrosine 132 facilitates the recruitment of PLC-γ1, leading to its activation and function at the LAT complex. In this study, we examined the phosphorylation kinetics of LAT and PLC-γ1 and the cellular localization of activated PLC-γ1. We observed that commencement of the phosphorylation of LAT tyrosine 132 and PLC-γ1 tyrosine 783 occurred simultaneously, supporting the current model. However, once begun, PLC-γ1 activation occurred more rapidly than LAT tyrosine 132. The association of LAT and PLC-γ1 was more transient than the interaction of LAT and Grb2 and a pool of activated PLC-γ1 translocated away from LAT to cellular structures containing the TCR. These studies demonstrate that LAT and PLC-γ1 form transient interactions that catalyze the activation of PLC-γ1, but that activated PLC-γ1 resides in both LAT and TCR clusters. Together, this work highlights that our current model is incomplete and the activation and function of PLC-γ1 in T cells is highly complex.
    Cellular Signalling 01/2014; DOI:10.1016/j.cellsig.2013.12.022 · 4.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The activation of T cells mediated by the T cell antigen receptor (TCR) requires the interaction of dozens of proteins, and its malfunction has pathological consequences. Our major focus is on new developments in the systems-level understanding of the TCR signal-transduction network. To make sense of the formidable complexity of this network, we argue that 'fine-grained' methods are needed to assess the relationships among a few components that interact on a nanometric scale, and those should be integrated with high-throughput '-omic' approaches that simultaneously capture large numbers of parameters. We illustrate the utility of this integrative approach with the transmembrane signaling protein Lat, which is a key signaling hub of the TCR signal-transduction network, as a connecting thread.
    Nature Immunology 08/2014; 15(9):790-797. DOI:10.1038/ni.2959 · 24.97 Impact Factor