Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth

1] Institut National de la Santé et de la Recherche Médicale (INSERM) U866, Dijon, France. [2] Faculté de Médecine et pharmacie, Université de Bourgogne, Dijon, France. [3].
Nature medicine (Impact Factor: 27.36). 12/2012; 19(1). DOI: 10.1038/nm.2999
Source: PubMed

ABSTRACT Chemotherapeutic agents are widely used for cancer treatment. In addition to their direct cytotoxic effects, these agents harness the host's immune system, which contributes to their antitumor activity. Here we show that two clinically used chemotherapeutic agents, gemcitabine (Gem) and 5-fluorouracil (5FU), activate the NOD-like receptor family, pyrin domain containing-3 protein (Nlrp3)-dependent caspase-1 activation complex (termed the inflammasome) in myeloid-derived suppressor cells (MDSCs), leading to production of interleukin-1β (IL-1β), which curtails anticancer immunity. Chemotherapy-triggered IL-1β secretion relied on lysosomal permeabilization and the release of cathepsin B, which bound to Nlrp3 and drove caspase-1 activation. MDSC-derived IL-1β induced secretion of IL-17 by CD4(+) T cells, which blunted the anticancer efficacy of the chemotherapy. Accordingly, Gem and 5FU exerted higher antitumor effects when tumors were established in Nlrp3(-/-) or Casp1(-/-) mice or wild-type mice treated with interleukin-1 receptor antagonist (IL-1Ra). Altogether, these results identify how activation of the Nlrp3 inflammasome in MDSCs by 5FU and Gem limits the antitumor efficacy of these chemotherapeutic agents.

1 Follower
74 Reads
  • Source
    • "The finding of localized inflammation after chemotherapy administration is consistent with an extensive literature documenting the activation of inflammatory signaling by chemotherapy. Doxorubicin exposure results in significant IL-1β production via activation of the inflammasome [17], [29]. Others have reported significant increases in IL-6 after chemotherapy administration in cancer patients [30]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer cachexia is a syndrome of weight loss that results from the selective depletion of skeletal muscle mass and contributes significantly to cancer morbidity and mortality. The driver of skeletal muscle atrophy in cancer cachexia is systemic inflammation arising from both the cancer and cancer treatment. While the importance of tumor derived inflammation is well described, the mechanism by which cytotoxic chemotherapy contributes to cancer cachexia is relatively unexplored. We found that the administration of chemotherapy to mice produces a rapid inflammatory response. This drives activation of the hypothalamic-pituitary-adrenal axis, which increases the circulating level of corticosterone, the predominant endogenous glucocorticoid in rodents. Additionally, chemotherapy administration results in a significant loss of skeletal muscle mass 18 hours after administration with a concurrent induction of genes involved with the ubiquitin proteasome and autophagy lysosome systems. However, in mice lacking glucocorticoid receptor expression in skeletal muscle, chemotherapy-induced muscle atrophy is completely blocked. This demonstrates that cytotoxic chemotherapy elicits significant muscle atrophy driven by the production of endogenous glucocorticoids. Further, it argues that pharmacotherapy targeting the glucocorticoid receptor, given in concert with chemotherapy, is a viable therapeutic strategy in the treatment of cancer cachexia.
    PLoS ONE 09/2014; 9(9):e106489. DOI:10.1371/journal.pone.0106489
  • Source
    • "Because of unregulated growth and hypoxia environments, ER stress is associated with tumor development. Depending on type or stage of tumor development, ER stress can enhance or suppress tumor development (Ghiringhelli et al., 2009; Allen et al., 2010; Hu et al., 2011; Bruchard et al., 2013). Moreover, Mahadevan et al. (2011) found that ER stress from stressed tumor cells could be transmitted to other neighborhood cells via un-identified heat-stable molecules. "
    [Show abstract] [Hide abstract]
    ABSTRACT: As an adaptive response to the overloading with misfolded proteins in the endoplasmic reticulum (ER), ER stress plays critical roles in maintaining protein homeostasis in the secretory pathway to avoid damage to the host. Such a conserved mechanism is accomplished through three well-orchestrated pathways known collectively as unfolded protein response (UPR). Persistent and pathological ER stress has been implicated in a variety of diseases in metabolic, inflammatory, and malignant conditions. Furthermore, ER stress is directly linked with inflammation through UPR pathways, which modulate transcriptional programs to induce the expression of inflammatory genes. Importantly, the inflammation induced by ER stress is directly responsible for the pathogenesis of metabolic and inflammatory diseases. In this review, we will discuss the potential signaling pathways connecting ER stress with inflammation. We will also depict the interplay between ER stress and inflammation in the pathogenesis of hepatic steatosis, inflammatory bowel diseases and colitis-associated colon cancer.
    Frontiers in Genetics 07/2014; 5:242. DOI:10.3389/fgene.2014.00242
  • Source
    • "Another aspect that is adversely impacted by IL-1 is anti-tumor immunity. IL-1 has been shown to suppress antitumor immunity and vaccine efficacy through expansion of myeloid-derived suppressor cells (MDSC) and generation and expansion of Th17 cells which activates Stat3 in tumor cells [35], [36]. Certain chemotherapeutic agents also trigger IL-1β release through lysosome destabilization and cathepsin B release, which in turn, curtails anticancer immunity [36]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective Glioblastoma is the most frequent and malignant form of primary brain tumor with grave prognosis. Mounting evidence supports that chronic inflammation (such as chronic overactivation of IL-1 system) is a crucial event in carcinogenesis and tumor progression. IL-1 also is an important cytokine with species-dependent regulations and roles in CNS cell activation. While much attention is paid to specific anti-tumor immunity, little is known about the role of chronic inflammation/innate immunity in glioma pathogenesis. In this study, we examined whether human astrocytic cells (including malignant gliomas) can produce IL-1 and its role in glioma progression. Methods We used a combination of cell culture, real-time PCR, ELISA, western blot, immunocytochemistry, siRNA and plasmid transfection, micro-RNA analysis, angiogenesis (tube formation) assay, and neurotoxicity assay. Results Glioblastoma cells produced large quantities of IL-1 when activated, resembling macrophages/microglia. The activation signal was provided by IL-1 but not the pathogenic components LPS or poly IC. Glioblastoma cells were highly sensitive to IL-1 stimulation, suggesting its relevance in vivo. In human astrocytes, IL-1β mRNA was not translated to protein. Plasmid transfection also failed to produce IL-1 protein, suggesting active repression. Suppression of microRNAs that can target IL-1α/β did not induce IL-1 protein. Glioblastoma IL-1β processing occurred by the NLRP3 inflammasome, and ATP and nigericin increased IL-1β processing by upregulating NLRP3 expression, similar to macrophages. RNAi of annexin A2, a protein strongly implicated in glioma progression, prevented IL-1 induction, demonstrating its new role in innate immune activation. IL-1 also activated Stat3, a transcription factor crucial in glioma progression. IL-1 activated glioblastoma-conditioned media enhanced angiogenesis and neurotoxicity. Conclusions Our results demonstrate unique, species-dependent immune activation mechanisms involving human astrocytes and astrogliomas. Specifically, the ability to produce IL-1 by glioblastoma cells may confer them a mesenchymal phenotype including increased migratory capacity, unique gene signature and proinflammatory signaling.
    PLoS ONE 07/2014; 9(7):e103432. DOI:10.1371/journal.pone.0103432
Show more

Questions & Answers about this publication