Targeting p38 Mitogen-Activated Protein Kinase Signaling Restores Subventricular Zone Neural Stem Cells and Corrects Neuromotor Deficits in Atm Knockout Mouse.

Department of Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Smithville, Texas, USA.
STEM CELLS TRANSLATIONAL MEDICINE (Impact Factor: 3.6). 07/2012; 1(7):548-56. DOI: 10.5966/sctm.2011-0063
Source: PubMed

ABSTRACT Ataxia-telangiectasia (A-T) is a progressive degenerative disorder that results in major neurological disability. In A-T patients, necropsy has revealed atrophy of cerebellar cortical layers along with Purkinje and granular cell loss. We have previously identified an oxidative stress-mediated increase in phospho-p38 mitogen-activated protein kinase (MAPK) and the resultant downregulation of Bmi-1 and upregulation of p21 as key components of the mechanism causing defective proliferation of neural stem cells (NSCs) isolated from the subventricular zone (SVZ) of Atm(-/-) mice. However, the in vivo aspect of alteration in SVZ tissue and the functional significance of p38MAPK activation in NSCs for neuropathogenesis of ATM deficiency remain unknown. Here we show that the NSC population was abnormally decreased in the SVZ of 3-month-old Atm(-/-) mice; this decrease was accompanied by p38MAPK activation. However, after a 2-month treatment with the p38MAPK inhibitor SB203580, starting at 1 month old, Atm(-/-) mice showed restoration of normal levels of Bmi-1 and p21 with the rescue of NSC population in the SVZ. In addition, treated Atm(-/-) mice exhibited more Purkinje cells in the cerebellum. Most importantly, motor coordination of Atm(-/-) mice was significantly improved in the treatment group. Our results show for the first time in vivo evidence of depleted NSCs in the SVZ of Atm(-/-) mice and also demonstrate that pharmacologic inhibition of p38MAPK signaling has the potential to treat neurological defects of A-T. This study provides a promising approach targeting the oxidative stress-dependent p38 signaling pathway not only for A-T but also for other neurodegenerative disorders.

  • [Show abstract] [Hide abstract]
    ABSTRACT: A murine model of ataxia telangiectasia was created by disrupting the Atm locus via gene targeting. Mice homozygous for the disrupted Atm allele displayed growth retardation, neurologic dysfunction, male and female infertility secondary to the absence of mature gametes, defects in T lymphocyte maturation, and extreme sensitivity to gamma-irradiation. The majority of animals developed malignant thymic lymphomas between 2 and 4 months of age. Several chromosomal anomalies were detected in one of these tumors. Fibroblasts from these mice grew slowly and exhibited abnormal radiation-induced G1 checkpoint function. Atm-disrupted mice recapitulate the ataxia telangiectasia phenotype in humans, providing a mammalian model in which to study the pathophysiology of this pleiotropic disorder.
    Cell 08/1996; 86(1):159-71. DOI:10.1016/S0092-8674(00)80086-0 · 33.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ataxia-telangiectasia (A-T) is a genetic disorder caused by a mutation of the Atm gene, which controls DNA repair, cell cycling, and redox homeostasis. Even though oxidative stress has been implicated in the neurological anomalies in A-T, the effects of ATM loss on neural stem cell (NSC) survival has remained elusive. In this study, we investigated the effects of oxidative stress on NSC proliferation in an animal model for A-T neurodegeneration. We found that cultured subventricular zone neurosphere cells from Atm(-/-) mice show impaired proliferation, as well as intrinsic elevation of reactive oxygen species (ROS) levels, compared with those from Atm(+/+) mice. We also show that increasing the levels of ROS by H(2)O(2) treatment significantly reduces Atm(+/+) neurosphere formation and proliferation. In Atm(-/-) neurosphere cells, the Akt and Erk1/2 pathways are disrupted, together with enhanced activity of the p38 mitogen-activated protein kinase (MAPK). Treatment of these cells with the antioxidant N-acetyl-L-cysteine (NAC) or with a p38 MAPK inhibitor restores normal proliferation and reduced expression of p21(cip1) and p27(kip1) in the Atm(-/-) NSCs. These observations indicate that ATM plays a crucial role in NSC proliferation, by activating Akt and Erk1/2 pathways and by suppressing ROS-p38 MAPK signaling. Together, our results suggest that p38 MAPK signaling acts as a negative regulator of NSC proliferation in response to oxidative stress. These findings suggest a potential mechanism for neuronal cell loss as a result of oxidative stress in NSCs in progressive neurodegenerative diseases such as A-T.
    Stem Cells 06/2009; 27(8):1987-98. DOI:10.1002/stem.125 · 7.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neural stem cells (NSCs) are capable of giving rise to neurons, glia, and astrocytes. Although self-renewal and differentiation in NSCs are regulated by many genes, such as Notch and Numb, little is known about the role of defective genes on the self-renewal and differentiation of NSCs from developing brain. The Niemann-Pick type C1 (NPC1) disease is a neurodegenerative disease caused by a mutation of the NPC1 gene that affects the function of the NPC1 protein. The ability of NSC self-renewal and differentiation was investigated using a model of NPC1 disease. The NPC1 disorder significantly affected the self-renewal ability of NSCs, as well as the differentiation. NSCs from NPC1-/- mice showed impaired self-renewal ability compared with the NPC1+/+ mice. These alterations were accompanied by the enhanced activity of p38 mitogen-activated protein kinases (MAPKs). Further, the specific p38 MAPK inhibitor SB202190 improved the self-renewal ability of NSCs from NPC-/- mice. This indicated that the NPC1 deficiency can lead to lack of self-renewal and altered differentiation of NSCs mediated by the activation of p38 MAPK, impairing the generation of neurospheres from NPC1-/- Thus, the NPC1 gene may play a crucial role in NSC self-renewal associated with p38 MAPK.
    Stem Cells 03/2006; 24(2):292-8. DOI:10.1634/stemcells.2005-0221 · 7.13 Impact Factor