Article

Ataxin-1 and ataxin-2 intermediate-length PolyQ expansions in amyotrophic lateral sclerosis

Institute of Neurology (W.S., P.V., F.B., A.G.), University Magna Graecia, Catanzaro
Neurology (Impact Factor: 8.3). 11/2012; 79(24). DOI: 10.1212/WNL.0b013e318278b618
Source: PubMed

ABSTRACT ABSTRACT OBJECTIVE: Recent evidence suggests that intermediate-length polyglutamine (PolyQ) expansions in the ataxin-2 (ATXN-2) gene are a risk factor for amyotrophic lateral sclerosis (ALS). This work was undertaken with the aim to investigate the frequency of ataxin-1 (ATXN-1) and ATXN-2 PolyQ expansions in a cohort of patients with sporadic ALS (sALS) and patients with familial ALS (fALS) from southern Italy. METHODS: We assessed the PolyQ lengths of ATXN-1 and ATXN-2 in 405 patients with sALS, 13 patients with fALS, and 296 unrelated controls without history of neurodegenerative disorders. RESULTS: We found significantly higher intermediate PolyQ expansions ≥32 for ATXN-1 alleles and ≥28 for ATXN-2 alleles in the sALS cohort (ATXN-1: ALS, 7.07% vs controls, 2.38%; p = 0.0001; ATXN-2: ALS, 2.72% vs controls, 0.5%; p = 0.001). ATXN-1 CAT and ATXN-2 CAA interruptions were detected in patients with ALS only. Age at onset, site of onset, and sex were not significantly related to the ATXN-1 or ATXN-2 PolyQ repeat length expansions. CONCLUSIONS: Both ATXN-1 and ATXN-2 PolyQ intermediate expansions are independently associated with an increased risk for ALS.

Full-text

Available from: Giancarlo Logroscino, Dec 30, 2013
0 Followers
 · 
231 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to establish the frequency of ATXN2 polyglutamine (polyQ) expansion in large cohorts of patients with amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and progressive supranuclear palsy (PSP), and to evaluate whether ATXN2 could act as a modifier gene in patients carrying the C9orf72 expansion.
    Neurology 08/2014; 83(11). DOI:10.1212/WNL.0000000000000778 · 8.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Amyotrophic lateral sclerosis (ALS) is a rare degenerative condition of the motor neurons. Over 10% of ALS cases are linked to monogenic mutations, with the remainder thought to be due to other risk factors, including environmental factors, genetic polymorphisms, and possibly gene-environmental interactions. We examined the association between ALS and an intermediate CAG repeat expansion in the ATXN2 gene using a meta-analytic approach. Observational studies were searched with relevant disease and gene terms from MEDLINE, EMBASE, and PsycINFO from January 2010 through to January 2014. All identified articles were screened using disease terms, gene terms, population information, and CAG repeat information according to PRISMA guidelines. The final list of 17 articles was further evaluated based on the study location, time period, and authors to exclude multiple usage of the same study populations: 13 relevant articles were retained for this study. The range 30-33 CAG repeats in the ATXN2 gene was most strongly associated with ALS. The meta-analysis revealed that the presence of an intermediate CAG repeat (30-33) in the ATXN2 gene was associated with an increased risk of ALS [odds ratio (OR) = 4.44, 95%CI: 2.91-6.76)] in Caucasian ALS patients. There was no significant difference in the association of this CAG intermediate repeat expansion in the ATXN2 gene between familial ALS cases (OR = 3.59, 1.58-8.17) and sporadic ALS cases (OR = 3.16, 1.88-5.32). These results indicate that the presence of intermediate CAG repeat expansion in the ATXN2 gene is a specific genetic risk factor for ALS, unlike monogenic mutations with an autosomal dominant transmission mode, which cause a more severe phenotype of ALS, with a higher prevalence in familial ALS.
    PLoS ONE 08/2014; 9(8):e105534. DOI:10.1371/journal.pone.0105534 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background genetic background and pathogenesis of motor neuron diseases (MNDs) have been increasingly elucidated over recent years. Aims to give an overview about publications during the last year concerning the genetic background and phenotypic manifestations of MNDs, such as familial or sporadic amyotrophic lateral sclerosis (fALS, sALS), spinal muscular atrophies (SMA), bulbospinal muscular atrophy (BSMA), and unclassified MNDs. Methods Pubmed search for literature about ALS, SMA, and BSMA for the period 10/2012 to 9/2013. Results an increasing number of mutated genes is recognised in fALS but also sALS patients. Genes mutated in sALS include C9orf72, SOD1, TARDBP, FUS, UBQL2, SQSTM1, DCTN1, and UNC13A. Juvenile (onset <20y) and adult ALS (early onset 20-60y, late onset >60y) are differentiated. Juvenile fALS is most frequently caused by mutations in ALS2, SETX, spatacsin, or Sigmar1 and adult fALS by mutations in C9orf72, SOD1, TARDBP, and FUS. Onset, phenotype, progression, and outcome of ALS are variable between different mutations, different genes, and different countries. Differentiation between sALS and fALS cases becomes artificial. Conclusions further progress has been made over the last year in the clarification and understanding of the etiology and pathogenesis of MNDs. However, further effort is needed to answer the many remaining questions.
    European journal of medical genetics 02/2014; 57(2-3). DOI:10.1016/j.ejmg.2014.01.002 · 1.49 Impact Factor