Article

Three-dimensional structures self-assembled from DNA bricks.

Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
Science (Impact Factor: 31.48). 11/2012; 338(6111):1177-83. DOI: 10.1126/science.1227268
Source: PubMed

ABSTRACT We describe a simple and robust method to construct complex three-dimensional (3D) structures by using short synthetic DNA strands that we call "DNA bricks." In one-step annealing reactions, bricks with hundreds of distinct sequences self-assemble into prescribed 3D shapes. Each 32-nucleotide brick is a modular component; it binds to four local neighbors and can be removed or added independently. Each 8-base pair interaction between bricks defines a voxel with dimensions of 2.5 by 2.5 by 2.7 nanometers, and a master brick collection defines a "molecular canvas" with dimensions of 10 by 10 by 10 voxels. By selecting subsets of bricks from this canvas, we constructed a panel of 102 distinct shapes exhibiting sophisticated surface features, as well as intricate interior cavities and tunnels.

0 Followers
 · 
164 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: A major goal of self-assembly research is the synthesis of biomolecular structures with diverse, intricate features across multiple length scales. Designing self-assembly processes becomes more difficult as the number of species or target structure size increases. Just as the ordered assembly of a machine or device makes complex manufacturing possible, ordered (or 'algorithmic') biomolecular self-assembly processes could enable the self-assembly of more complex structures. We discuss the design of ordered assembly processes with particular attention to DNA and RNA. The assembly of complexes can be ordered using selective, multivalent interactions or active components that change shape after assembly. The self-assembly of spatial gradients driven by reaction-diffusion can also be ordered. We conclude by considering topics for future research. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Current Opinion in Structural Biology 04/2015; 31. DOI:10.1016/j.sbi.2015.03.003 · 8.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA-based nanostructures have received great attention as molecular vehicles for cellular delivery of biomolecules and cancer drugs. Here, we report on the cellular uptake of tubule-like DNA tile-assembled nanostructures 27 nm in length and 8 nm in diameter that carry siRNA molecules, folic acid and fluorescent dyes. In our observations, the DNA structures are delivered to the endosome and do not reach the cytosol of the GFP-expressing HeLa cells that were used in the experiments. Consistent with this observation, no elevated silencing of the GFP gene could be detected. Furthermore, the presence of up to six molecules of folic acid on the carrier surface did not alter the uptake behavior and gene silencing. We further observed several challenges that have to be considered when performing in vitro and in vivo experiments with DNA structures: (i) DNA tile tubes consisting of 42 nt-long oligonucleotides and carrying single-or double-stranded extensions degrade within one hour in cell medium at 37 °C, while the same tubes without extensions are stable for up to eight hours. The degradation is caused mainly by the low concentration of divalent ions in the media. The lifetime in cell medium can be increased drastically by employing DNA tiles that are 84 nt long. (ii) Dyes may get cleaved from the oligonucleotides and then accumulate inside the cell close to the OPEN ACCESS Nanomaterials 2015, 5 48 mitochondria, which can lead to misinterpretation of data generated by flow cytometry and fluorescence microscopy. (iii) Single-stranded DNA carrying fluorescent dyes are internalized at similar levels as the DNA tile-assembled tubes used here.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA-based nanoconstructs possess great potential for biomedical applications. However, the in vivo behavior of such constructs at the microscopic tissue/cell level as well as their inflammatory potential is largely unknown. Unmethylated CpG sequences of DNA are recognized by Toll-like receptor 9 (TLR9), and thus initiate an innate immune response. In this study, we investigated the use of DNA-based nanotubes as carrier systems for CpG delivery and their effect on immune cells in vivo and in real time. DNA nanotubes were microinjected into skeletal muscle of anesthetized mice. Using in vivo microscopy, we observed that the DNA tubes were internalized within minutes by tissue-resident macrophages and localized in their endosomes. Only microinjection of CpG-decorated DNA nanotubes but not of plain DNA nanotubes or CpG oligonucleotides induced a significant recruitment of leukocytes into the muscle tissue as well as activation of the NF-ĸB pathway in surrounding cells. These results suggest that DNA nanotubes are promising delivery vehicles to target tissue macrophages, whereupon the immunogenic potential depends on the decoration with CpG oligonucleotides. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Biomaterials 06/2015; 53. DOI:10.1016/j.biomaterials.2015.02.099 · 8.31 Impact Factor