Article

Three-dimensional structures self-assembled from DNA bricks.

Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
Science (Impact Factor: 31.48). 11/2012; 338(6111):1177-83. DOI: 10.1126/science.1227268
Source: PubMed

ABSTRACT We describe a simple and robust method to construct complex three-dimensional (3D) structures by using short synthetic DNA strands that we call "DNA bricks." In one-step annealing reactions, bricks with hundreds of distinct sequences self-assemble into prescribed 3D shapes. Each 32-nucleotide brick is a modular component; it binds to four local neighbors and can be removed or added independently. Each 8-base pair interaction between bricks defines a voxel with dimensions of 2.5 by 2.5 by 2.7 nanometers, and a master brick collection defines a "molecular canvas" with dimensions of 10 by 10 by 10 voxels. By selecting subsets of bricks from this canvas, we constructed a panel of 102 distinct shapes exhibiting sophisticated surface features, as well as intricate interior cavities and tunnels.

0 Followers
 · 
162 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A promising application of DNA self-assembly is the fabrication of chromophore-based excitonic devices. DNA brick assembly is a compelling method for creating programmable nanobreadboards on which chromophores may be rapidly and easily repositioned to prototype new excitonic devices, optimize device operation, and induce reversible switching. Using DNA nanobreadboards, we have demonstrated each of these functions through the construction and operation of two different excitonic AND logic gates. The modularity and high chromophore density achievable via this brick-based approach provide a viable path toward developing information processing and storage systems.
    02/2015; 2(3). DOI:10.1021/ph500444d
  • [Show abstract] [Hide abstract]
    ABSTRACT: The two main branches of bionanotechnology involve the self-assembly of either peptides or DNA. Peptide scaffolds offer chemical versatility, architectural flexibility and structural complexity, but they lack the precise base pairing and molecular recognition available with nucleic acid assemblies. Here, inspired by the ability of aromatic dipeptides to form ordered nanostructures with unique physical properties, we explore the assembly of peptide nucleic acids (PNAs), which are short DNA mimics that have an amide backbone. All 16 combinations of the very short di-PNA building blocks were synthesized and assayed for their ability to self-associate. Only three guanine-containing di-PNAs-CG, GC and GG-could form ordered assemblies, as observed by electron microscopy, and these di-PNAs efficiently assembled into discrete architectures within a few minutes. The X-ray crystal structure of the GC di-PNA showed the occurrence of both stacking interactions and Watson-Crick base pairing. The assemblies were also found to exhibit optical properties including voltage-dependent electroluminescence and wide-range excitation-dependent fluorescence in the visible region.
    Nature Nanotechnology 03/2015; DOI:10.1038/nnano.2015.27 · 33.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: For over half a century, the biological roles of nucleic acids as catalytic enzymes, intracellular regulatory molecules, and the carriers of genetic information have been studied extensively. More recently, the sequence-specific binding properties of DNA have been exploited to direct the assembly of materials at the nanoscale. Integral to any methodology focused on assembling matter from smaller pieces is the idea that final structures have well-defined spacings, orientations, and stereo-relationships. This requirement can be met by using DNA-based constructs that present oriented nanoscale bonding elements from rigid core units. Here, we draw analogy between such building blocks and the familiar chemical concepts of "bonds" and "valency" and review two distinct but related strategies that have used this design principle in constructing new configurations of matter. Copyright © 2015, American Association for the Advancement of Science.

Full-text (2 Sources)

Download
42 Downloads
Available from
May 21, 2014