Joint Probabilistic Model of Shape and Intensity for Multiple Abdominal Organ Segmentation from Volumetric CT Images.

ABSTRACT We propose a novel joint probabilistic model that correlates a new probabilistic shape model with the corresponding global intensity distribution to segment multiple abdominal organs simultaneously. Our probabilistic shape model estimates the probability of an individual voxel belonging to the estimated shape of the object. The probability density of the estimated shape is derived from a combination of the shape variations of target class and the observed shape information. To better capture the shape variations, we used probabilistic principle component analysis optimized by expectation maximization to capture the shape variations and reduce computational complexity. The maximum a posteriori estimation was optimized by the iterated conditional mode-expectation maximization. We used 72 training datasets including low- and high-contrast CT images to construct the shape models for the liver, spleen and both kidneys. We evaluated our algorithm on 40 test datasets that were grouped into normal (34 normal cases) and pathologic (6 datasets) classes. The testing datasets were from different databases and manual segmentation was performed by different clinicians. We measured the volumetric overlap percentage error, relative volume difference, average square symmetric surface distance, false positive rate and false negative rate and our method achieved accurate and robust segmentation for multiple abdominal organs simultaneously.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Accurate tissue and structure segmentation of Magnetic Resonance (MR) brain scans is critical in several applications. In most approaches this task is handled through two sequential steps. We propose to carry out cooperatively both tissue and subcortical structure segmentation by distributing a set of local and cooperative Markov Random Field (MRF) models. Tissue segmentation is performed by partitioning the volume into subvolumes where local MRFs are estimated in cooperation with their neighbors to ensure consistency. Local estimation fits precisely to the local intensity distribution and thus handles nonuniformity of intensity without any bias field modelization. Similarly, subcortical structure segmentation is performed via local MRF models that integrate localization constraints provided by a priori fuzzy description of brain anatomy. Subcortical structure segmentation is not reduced to a subsequent processing step but joined with tissue segmentation: the two procedures cooperate to gradually and conjointly improve model accuracy. We propose a framework to implement this distributed modeling integrating cooperation, coordination, and local model checking in an efficient way. Its evaluation was performed using both phantoms and real 3T brain scans, showing good results and in particular robustness to nonuniformity and noise with a low computational cost. This original combination of local MRF models, including anatomical knowledge, appears as a powerful and promising approach for MR brain scan segmentation.
    IEEE Transactions on Medical Imaging 09/2009; · 3.80 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this paper we present new results relative to the “expectation-maximization/maximization of the posterior marginals” (EM/MPM) algorithm for simultaneous parameter estimation and segmentation of textured images. The goal of the EM/MPM algorithm is to minimize the expected value of the number of misclassified pixels. We present new theoretical results in this paper which show that the algorithm can be expected to achieve this goal, to the extent that the EM estimates of the model parameters are close to the true values of the model parameters. We also present new experimental results demonstrating the performance of the algorithm
    Image Processing, 1996. Proceedings., International Conference on; 10/1996
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A common challenge for automated segmentation techniques is differentiation between images of close objects that have similar intensities, whose boundaries are often blurred due to partial-volume effects. We propose a novel approach to segmentation of two-dimensional images, which addresses this challenge. Our method, which we call intrinsic shape for segmentation (ISeg), analyzes isolabel-contour maps to identify coherent regions that correspond to major objects. ISeg generates an isolabel-contour map for an image by multilevel thresholding with a fine partition of the intensity range. ISeg detects object boundaries by comparing the shape of neighboring isolabel contours from the map. ISeg requires only little effort from users; it does not require construction of shape models of target objects. In a formal validation with computed-tomography angiography data, we showed that ISeg was more robust than conventional thresholding, and that ISeg's results were comparable to results of manual tracing.
    IEEE Transactions on Medical Imaging 12/2000; 19(11):1064-74. · 3.80 Impact Factor