Joint Probabilistic Model of Shape and Intensity for Multiple Abdominal Organ Segmentation From Volumetric CT Images

IEEE Journal of Biomedical and Health Informatics (Impact Factor: 1.44). 11/2013; 17(1):92-102. DOI: 10.1109/TITB.2012.2227273
Source: PubMed


We propose a novel joint probabilistic model that correlates a new probabilistic shape model with the corresponding global intensity distribution to segment multiple abdominal organs simultaneously. Our probabilistic shape model estimates the probability of an individual voxel belonging to the estimated shape of the object. The probability density of the estimated shape is derived from a combination of the shape variations of target class and the observed shape information. To better capture the shape variations, we used probabilistic principle component analysis optimized by expectation maximization to capture the shape variations and reduce computational complexity. The maximum a posteriori estimation was optimized by the iterated conditional mode-expectation maximization. We used 72 training datasets including low- and high-contrast CT images to construct the shape models for the liver, spleen and both kidneys. We evaluated our algorithm on 40 test datasets that were grouped into normal (34 normal cases) and pathologic (6 datasets) classes. The testing datasets were from different databases and manual segmentation was performed by different clinicians. We measured the volumetric overlap percentage error, relative volume difference, average square symmetric surface distance, false positive rate and false negative rate and our method achieved accurate and robust segmentation for multiple abdominal organs simultaneously.

16 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: We propose a framework that efficiently employs intensity, gradient, and textural features for three-dimensional (3-D) segmentation of medical (MRI/CT) volumes. Our methodology commences by determining the magnitude of intensity variations across the input volume using a 3-D gradient detection scheme. The resultant gradient volume is utilized in a dynamic volume growing/formation process that is initiated in voxel locations with small gradient magnitudes and is concluded at sites with large gradient magnitudes, yielding a map comprising an initial set of partitions (or subvolumes). This partition map is combined with an entropy-based texture descriptor along with intensity and gradient attributes in a multivariate analysis-based volume merging procedure that fuses subvolumes with similar characteristics to yield a final/refined segmentation output. Additionally, a semiautomated version of the aforestated algorithm that allows a user to interactively segment a desired subvolume of interest as opposed to the entire volume is also discussed. Our approach was tested on several MRI and CT datasets and the results show favorable performance in comparison to the state-of-the-art ITK-SNAP technique.
    05/2015; 2(2):024003. DOI:10.1117/1.JMI.2.2.024003