Photochemical interactions of methylene blue and analogues with DNA and other biological substrates

Chemistry Department, Trinity College, Dublin, Ireland.
Journal of Photochemistry and Photobiology B Biology (Impact Factor: 3.11). 01/1993; 21:103-124.

ABSTRACT The light-induced reactions of methylene blue and related phenothiazinium dyes with biological substrates are described. The properties of the excited states of the dyes, their reactions with nucleic acids and their photosensitised chemical modifications of nucleic acid bases are examined. Reports on phenothiazinium dye-induced damage to proteins, lipids, biological membranes, organelles, viruses, bacteria, mammalian cells and carcinomas are reviewed.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Determining the mechanical behaviour of tendon and ligamentous tissue remains challenging, as it is anisotropic, non-linear and inhomogeneous in nature. Methods In this study, three-dimensional (3D) digital image correlation (DIC) was adopted to examine the strain distribution in the human Achilles tendon. Therefore, 6 fresh frozen human Achilles tendon specimens were mounted in a custom made rig for uni-axial loading. 3D DIC measurements of each loading position were obtained and compared to 2 linear variable differential transformers (LVDT’s). Results 3D DIC was able to calculate tendon strain in every region of all obtained images. The scatter was found to be low in all specimens and comparable to that obtained in steel applications. The accuracy of the 3D DIC measurement was higher in the centre of the specimen where scatter values around 0.03% strain were obtained. The overall scatter remained below 0.3% in all specimens. The spatial resolution of 3D DIC on human tendon tissue was found to be 0.1 mm2. The correlation coefficient between the 3D DIC measurements and the LVDT measurements showed an excellent linear agreement in all specimens (R2 = 0.99). Apart from the longitudinal strain component, an important transverse strain component was revealed in all specimens. The strain distribution of both components was of a strongly inhomogeneous nature, both within the same specimen and amongst different specimens. Conclusion DIC proved to be a very accurate and reproducible tool for 3D strain analysis in human tendon tissue.
    The Journal of Experimental Orthopaedics. 06/2014; 1:1-9.
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the present investigation, we have elucidated the interaction between thionine (TH) and bovine hemoglobin (BHb) under physiological conditions by using absorption, emission, time resolved fluorescence, synchronous fluorescence, circular dichroism (CD) and three dimensional emission (3D) spectral studies. Molecular docking experiment was also carried out to establish the possible binding site of TH on BHb. The emission spectral studies revealed that, TH have the ability to bind with BHb and form a ground state complex via static quenching process. The calculated binding constant and the number of binding sites was found to be 3.65×10(4)dm(3)mol(-1) and 1.04, respectively. Förster Resonance Energy Transfer (FRET) theory was employed to calculate the distance (r) between donor (BHb) and acceptor (TH) as 3.64nm. Furthermore, the conformational changes of BHb induced by TH complexation showed some degree of structural unfolding. In addition, molecular docking study confirmed that the most probable binding site of TH was located within the active cavity constituted by α1 and α2 subunits of BHb.
    Journal of photochemistry and photobiology. B, Biology 01/2014; 131C:43-52. · 3.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Photodynamic therapy (PDT) is gaining increasing recognition for breast cancer treatment because it offers local selectivity and reduced toxic side effects compared to radiotherapy and chemotherapy. In PDT, photosensitizer drugs are loaded in different nanomaterials and used in combination with light exposure. However, the most representative issue with PDT is the difficulty of nanomaterials to encapsulate anticancer drugs at high doses, which results in low efficacy of the PDT treatment. Here, we proposed the development of the poly(N-isopropylacrylamide) (PNIPAM) microgel for the encapsulation of methylene blue, an anticancer drug, for its use as breast cancer treatment in MCF-7 cell line. We developed biocompatible microgels based on nonfunctionalized PNIPAM and its corresponding anionically functionalized PNIPAM and polyacrylic acid (PNIPAM-co-PAA) microgel. Methylene blue was used as the photosensitizer drug because of its ability to generate toxic reactive oxygen species upon exposure to light at 664 nm. Core PNIPAM and core/shell PNIPAM-co-PAA microgels were synthesized and characterized using ultraviolet-visible spectroscopy and dynamic light scattering. The effect of methylene blue was evaluated using the MCF-7 cell line. Loading of methylene blue in core PNIPAM microgel was higher than that in the core/shell PNIPAM-co-PAA microgel, indicating that electrostatic interactions did not play an important role in loading a cationic drug. This behavior is probably due to the skin layer inhibiting the high uptake of drugs in the PNIPAM-co-PAA microgel. Core PNIPAM microgel effectively retained the cationic drug (i.e., methylene blue) for several hours compared to core/shell PNIPAM-co-PAA and enhanced its photodynamic efficacy in vitro more than that of free methylene blue. Our results showed that the employment of core PNIPAM and core/shell PNIPAM-co-PAA microgels enhanced the encapsulation of methylene blue. Core PNIPAM microgel released the drug more slowly than did core/shell PNIPAM-co-PAA, and it effectively inhibited the growth of MCF-7 cells.
    Journal of Breast Cancer 03/2014; 17(1):18-24. · 0.84 Impact Factor


Available from
May 20, 2014