Article

400 mu J 79 ns amplified pulses from a Q-switched fiber laser using an Yb3+-doped fiber saturable absorber

Optics Express (Impact Factor: 3.53). 10/2012; 20(21):23778-89. DOI: 10.1364/OE.20.023778
Source: PubMed

ABSTRACT We report a passively Q-switched all-fiber laser using a large mode area (LMA) Yb3+-doped fiber cladding-pumped at 915 nm and an unpumped single-mode Yb3+-doped fiber as the saturable absorber (SA). The saturable absorber fiber and gain fiber were coupled with a free-space telescope to optimize the coupling efficiency between the disparate fibers, preferentially bleaching the SA fiber before gain depletion in the pumped fiber. Using this scheme we first demonstrate a Q-switched oscillator with 40 μJ 79 ns pulses at 1026 nm, and show that pulses can be generated from 1020 nm to 1040 nm. The associated peak power of the oscillator alone is more than two orders of magnitude larger than that reported in previous experimental studies using an Yb3+-doped fiber as a saturable absorber. We further demonstrate an amplified pulse energy of 0.4 mJ using an Yb3+-doped cladding pumped fiber amplifier. Experimental studies in which the saturable absorber length, pump times, and wavelengths are independently varied reveal the impact of these parameters on laser performance.

0 Followers
 · 
70 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The integration of optical components into the digital processing units of satellite subsystems has the potential to remove interconnect bottlenecks inherent to the volume, mass, complexity, reliability and crosstalk issues of copper-based interconnects. Assuming on-board high-bandwidth communications will utilize passive optical fibers as a communication channel, this work investigates the impact of gamma irradiation from a Co-60 source on both passive optical fibers and ytterbium-doped single-mode fibers operated as amplifiers for a 1060-nm light source. Standard optical patch cables were evaluated along with active Yb-doped double-clad fibers. Varied exposure times and signal transmission wavelengths were used to investigate the degradation of the fibers exposed to total doses above 100 krad (Si). The effect on the amplified signal gain was studied for the Yb-doped fibers. The increased attenuation in the fibers across a broad wavelength range in response to multiple levels of gamma radiation exposure along with the effect that the increased attenuation has on the actively pumped Yb-doped fiber amplifier performance, is discussed.
    Proceedings of SPIE - The International Society for Optical Engineering 02/2014; DOI:10.1117/12.2039613 · 0.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report an all-fiber passively Q-switched laser using a large mode area (LMA) Yb3+ -doped fiber claddingpumped at 915 nm and an unpumped single-mode (SM) Yb3+-doped fiber as the saturable absorber (SA). The saturable absorber SM fiber and LMA gain fiber were coupled with a fiber taper designed to match the fundamental spatial mode of the LMA fiber and the expanded LP01 mode of the single mode fiber. The amplified spontaneous (ASE) intensity propagating in the single mode SA saturates the absorption before the onset of gain depletion in the pumped fiber, switching the fiber cavity to a high Q-state and producing a pulse. Using this scheme we demonstrate a Q-switched all-fiber oscillator with 32 μJ 93 ns pulses at 1030 nm. The associated peak power is nearly two orders of magnitude larger than that reported in previous experimental studies using a single Yb+3 saturable absorber fiber. The pulse energy was amplified to 0.230 mJ using an Yb3+-doped cladding pumped fiber amplifier fusion spliced to the fiber oscillator, increasing the energy by eight fold while preserving the all-fiber architecture.
    Proceedings of SPIE - The International Society for Optical Engineering 02/2014; DOI:10.1117/12.2040813 · 0.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: An all-fiber passively Q-switched Yb-doped fiber laser with fiber saturable absorber (SA) based on a piece of Sm-doped fiber is presented. For the first time, we observe the fast stimulated Brillouin scattering Q-switched process in an Yb/Sm all-fiber laser and obtain 41 ns pulses and 1.7 kW maximum peak power. Compared with the reported traditional SA Q-switched process, the pulse energy and peak power are both improved an order of magnitude. Furthermore, a traditional SA Q-switched process with 450 ns pulsewidth and 7.5 W peak power is also obtained in the same structure by increasing the feedback of cavity's output end.
    Journal of Lightwave Technology 07/2014; 32(14):2510-2515. DOI:10.1109/JLT.2014.2329013 · 2.86 Impact Factor