Article

A generalization for optimized phase retrieval algorithms

Optics Express (Impact Factor: 3.49). 10/2012; 20(22):24778-90. DOI: 10.1364/OE.20.024778
Source: PubMed

ABSTRACT In this work, we demonstrate an improved method for iterative phase retrieval with application to coherent diffractive imaging. By introducing additional operations inside the support term of existing iterated projection algorithms, we demonstrate improved convergence speed, higher success rate and, in some cases, improved reconstruction quality. New algorithms take a particularly simple form with the introduction of a generalized projection-based reflector. Numerical simulations verify that these new algorithms surpass the current standards without adding complexity to the reconstruction process. Thus the introduction of this new class of algorithms offers a new array of methods for efficiently deconvolving intricate data.

Download full-text

Full-text

Available from: Daniel Adams, Sep 11, 2014
0 Followers
 · 
107 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent breakthroughs in high harmonic generation have extended the reach of bright tabletop coherent light sources from a previous limit of ≍100 eV in the extreme ultraviolet (EUV) all the way beyond 1 keV in the soft X-ray region. Due to its intrinsically short pulse duration and spatial coherence, this light source can be used to probe the fastest physical processes at the femtosecond timescale, with nanometer-scale spatial resolution using a technique called coherent diffractive imaging (CDI). CDI is an aberration-free technique that replaces image-forming optics with a computer phase retrieval algorithm, which recovers the phase of a measured diffraction amplitude. This technique typically requires the sample of interest to be isolated; however, it is possible to loosen this constraint by imposing isolation on the illumination. Here we extend previous tabletop results, in which we demonstrated the ability to image a test object with 22 nm resolution using 13 nm light [3], to imaging of more complex samples using the keyhole CDI technique adapted to our source. We have recently demonstrated the ability to image extended objects in a transmission geometry with ≍100 nm resolution. Finally, we have taken preliminary CDI measurements of extended nanosystems in reflection geometry. We expect that this capability will soon allow us to image dynamic processes in nanosystems at the femtosecond and nanometer scale.
    Proceedings of SPIE - The International Society for Optical Engineering 09/2013; DOI:10.1117/12.2026300 · 0.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many imaging techniques provide measurements proportional to Fourier magnitudes of an object, from which one attempts to form an image. One such technique is intensity interferometry which measures the squared Fourier modulus. Intensity interferometry is a synthetic aperture approach known to obtain high spatial resolution information, and is effectively insensitive to degradations from atmospheric turbulence. These benefits are offset by an intrinsically low signal-to-noise (SNR) ratio. Forward models have been theoretically shown to have best performance for many imaging approaches. On the other hand, phase retrieval is designed to reconstruct an image from Fourier-plane magnitudes and object-plane constraints. So it's natural to ask, "How well does phase retrieval perform compared to forward models in cases of interest?" Image reconstructions are presented for both techniques in the presence of significant noise. Preliminary conclusions are presented for attainable resolution vs. DC SNR.
    Proceedings of SPIE - The International Society for Optical Engineering 09/2013; DOI:10.1117/12.2026974 · 0.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We demonstrate the first general tabletop EUV coherent microscope that can image extended, non-isolated, non-periodic, objects. By implementing keyhole coherent diffractive imaging with curved mirrors and a tabletop high harmonic source, we achieve improved efficiency of the imaging system as well as more uniform illumination at the sample, when compared with what is possible using Fresnel zone plates. Moreover, we show that the unscattered light from a semi-transparent sample can be used as a holographic reference wave, allowing quantitative information about the thickness of the sample to be extracted from the retrieved image. Finally, we show that excellent tabletop image fidelity is achieved by comparing the retrieved images with scanning electron and atomic force microscopy images, and show superior capabilities in some cases.
    Optics Express 09/2013; 21(19):21970-21980. DOI:10.1364/OE.21.021970 · 3.49 Impact Factor
Show more