Individual Variation in Levels of Haptoglobin-Related Protein in Children from Gabon

London School of Hygiene and Tropical Medicine, United Kingdom
PLoS ONE (Impact Factor: 3.23). 11/2012; 7(11):e49816. DOI: 10.1371/journal.pone.0049816
Source: PubMed


Haptoglobin related protein (Hpr) is a key component of trypanosome lytic factors (TLF), a subset of high-density lipoproteins (HDL) that form the first line of human defence against African trypanosomes. Hpr, like haptoglobin (Hp) can bind to hemoglobin (Hb) and it is the Hpr-Hb complexes which bind to these parasites allowing uptake of TLF. This unique form of innate immunity is primate-specific. To date, there have been no population studies of plasma levels of Hpr, particularly in relation to hemolysis and a high prevalence of ahaptoglobinemia as found in malaria endemic areas.
We developed a specific enzyme-linked immunosorbent assay to measure levels of plasma Hpr in Gabonese children sampled during a period of seasonal malaria transmission when acute phase responses (APR), malaria infection and associated hemolysis were prevalent. Median Hpr concentration was 0.28 mg/ml (range 0.03-1.1). This was 5-fold higher than that found in Caucasian children (0.049 mg/ml, range 0.002-0.26) with no evidence of an APR. A general linear model was used to investigate associations between Hpr levels, host polymorphisms, parasitological factors and the acute phase proteins, Hp, C-reactive protein (CRP) and albumin. Levels of Hpr were associated with Hp genotype, decreased with age and were higher in females. Hpr concentration was strongly correlated with that of Hp, but not CRP.
Individual variation in Hpr levels was related to Hp level, Hp genotype, demographics, malaria status and the APR. The strong correlations between plasma levels of Hp and Hpr suggest that they are regulated by similar mechanisms. These population-based observations indicate that a more dynamic view of the relative roles of Hpr and Hpr-Hb complexes needs to be considered in understanding innate immunity to African trypanosomes and possibly other pathogens including the newly discovered Plasmodium spp of humans and primates.

Download full-text


Available from: Freya J I Fowkes,
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: High-density lipoproteins (HDL) are complexes of multiple talents, some of which have only recently been recognised but all of which are under active investigation. Clinical interest initially arose from their amply demonstrated role in atherosclerotic disease with their consequent designation as a major cardiovascular disease (CVD) risk factor. However, interest is no longer confined to vascular tissues, with the reports of impacts of the lipoprotein on pancreatic, renal and nervous tissues, amongst other possible targets. The ever-widening scope of HDL talents also encompasses environmental hazards, including infectious agents and environmental toxins. In almost all cases, HDL would appear to have a beneficial impact on health. It raises the intriguing question of whether these various talents emanate from a basic ancestral function to protect the cell.The following chapter will illustrate and review our current understanding of some of the functions attributed to HDL. The first section will look at the antioxidative functions of HDL and possible mechanisms that are involved. The second section will focus specifically on paraoxonase-1 (PON1), which appears to bridge the divide between the two HDL functions discussed herein. This will lead into the final section dealing with HDL as a detoxifying agent protecting against exposure to environmental pathogens and other toxins.
    Handbook of experimental pharmacology 01/2015; 224:207-228. DOI:10.1007/978-3-319-09665-0_5