Brain Structural Correlates of Reward Sensitivity and Impulsivity in Adolescents with Normal and Excess Weight

Department of Personality, Evaluation and Psychological Treatment, University of Granada, Granada, Spain.
PLoS ONE (Impact Factor: 3.23). 11/2012; 7(11):e49185. DOI: 10.1371/journal.pone.0049185
Source: PubMed


Neuroscience evidence suggests that adolescent obesity is linked to brain dysfunctions associated with enhanced reward and somatosensory processing and reduced impulse control during food processing. Comparatively less is known about the role of more stable brain structural measures and their link to personality traits and neuropsychological factors on the presentation of adolescent obesity. Here we aimed to investigate regional brain anatomy in adolescents with excess weight vs. lean controls. We also aimed to contrast the associations between brain structure and personality and cognitive measures in both groups.
Fifty-two adolescents (16 with normal weight and 36 with excess weight) were scanned using magnetic resonance imaging and completed the Sensitivity to Punishment and Sensitivity to Reward Questionnaire (SPSRQ), the UPPS-P scale, and the Stroop task. Voxel-based morphometry (VBM) was used to assess possible between-group differences in regional gray matter (GM) and to measure the putative differences in the way reward and punishment sensitivity, impulsivity and inhibitory control relate to regional GM volumes, which were analyzed using both region of interest (ROI) and whole brain analyses. The ROIs included areas involved in reward/somatosensory processing (striatum, somatosensory cortices) and motivation/impulse control (hippocampus, prefrontal cortex).
Excess weight adolescents showed increased GM volume in the right hippocampus. Voxel-wise volumes of the second somatosensory cortex (SII) were correlated with reward sensitivity and positive urgency in lean controls, but this association was missed in excess weight adolescents. Moreover, Stroop performance correlated with dorsolateral prefrontal cortex volumes in controls but not in excess weight adolescents.
Adolescents with excess weight have structural abnormalities in brain regions associated with somatosensory processing and motivation.


Available from: Laura Moreno-López
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A psychobiological dimension of eating behaviour is proposed, which is anchored at the low end by energy intake that is relatively well matched to energy output and is reflected by a stable body mass index (BMI) in the healthy range. Further along the continuum are increasing degrees of overeating (and BMI) characterized by more severe and more compulsive ingestive behaviours. In light of the many similarities between chronic binge eating and drug abuse, several authorities have adopted the perspective that an apparent dependence on highly palatable food-accompanied by emotional and social distress-can be best conceptualized as an addiction disorder. Therefore, this review also considers the overlapping symptoms and characteristics of binge eating disorder (BED) and models of food addiction, both in preclinical animal studies and in human research. It also presents this work in the context of the modern and "toxic" food environment and therein the ubiquitous triggers for over-consumption. We complete the review by providing evidence that what we have come to call "food addiction" may simply be a more acute and pathologically dense form of BED.
    05/2013; 2013(10):435027. DOI:10.1155/2013/435027
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Obsessive-compulsive disorder (OCD) is a clinically heterogeneous condition. Although structural brain alterations have been consistently reported in OCD, their interaction with particular clinical subtypes deserves further examination. Among other approaches, a two-group classification in patients with autogenous and reactive obsessions has been proposed. The purpose of the present study was to assess, by means of a voxel-based morphometry analysis, the putative brain structural correlates of this classification scheme in OCD patients. Ninety-five OCD patients and 95 healthy controls were recruited. Patients were divided into autogenous (n = 30) and reactive (n = 65) sub-groups. A structural magnetic resonance image was acquired for each participant and pre-processed with SPM8 software to obtain a volume-modulated gray matter map. Whole-brain and voxel-wise comparisons between the study groups were then performed. In comparison to the autogenous group, reactive patients showed larger gray matter volumes in the right Rolandic operculum. When compared to healthy controls, reactive patients showed larger volumes in the putamen (bilaterally), while autogenous patients showed a smaller left anterior temporal lobe. Also in comparison to healthy controls, the right middle temporal gyrus was smaller in both patient subgroups. Our results suggest that autogenous and reactive obsessions depend on partially dissimilar neural substrates. Our findings provide some neurobiological support for this classification scheme and contribute to unraveling the neurobiological basis of clinical heterogeneity in OCD.
    PLoS ONE 09/2013; 8(9):e75273. DOI:10.1371/journal.pone.0075273 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: The etiology of anorexia nervosa is still unknown. Multiple and distributed brain regions have been implicated in its pathophysiology, implying a dysfunction of connected neural circuits. Despite these findings, the role of white matter in anorexia nervosa has been rarely assessed. In this study, we used diffusion tensor imaging (DTI) to characterize alterations of white matter microstructure in a clinically homogeneous sample of patients with anorexia nervosa. Methods: Women with anorexia nervosa (restricting subtype) and healthy controls underwent brain DTI. We used tract-based spatial statistics to compare fractional anisotropy (FA) and mean diffusivity (MD) maps between the groups. Furthermore, axial (AD) and radial diffusivity (RD) measures were extracted from regions showing group differences in either FA or MD. Results: We enrolled 19 women with anorexia nervosa and 19 healthy controls in our study. Patients with anorexia nervosa showed significant FA decreases in the parietal part of the left superior longitudinal fasciculus (SLF; p(FWE) < 0.05), with increased MD and RD but no differences in AD. Patients with anorexia nervosa also showed significantly increased MD in the fornix (p(FWE) < 0.05), accompanied by decreased FA and increased RD and AD. Limitations: Limitations include our modest sample size and cross-sectional design. Conclusion: Our findings support the presence of white matter pathology in patients with anorexia nervosa. Alterations in the SLF and fornix might be relevant to key symptoms of anorexia nervosa, such as body image distortion or impairments in body-energy-balance and reward processes. The differences found in both areas replicate those found in previous DTI studies and support a role for white matter pathology of specific neural circuits in individuals with anorexia nervosa.
    Journal of psychiatry & neuroscience: JPN 06/2014; 39(4):130135. DOI:10.1503/jpn.130135 · 5.86 Impact Factor
Show more