Article

Minicircle DNA Vectors Achieve Sustained Expression Reflected by Active Chromatin and Transcriptional Level.

Department of Genetics, Stanford University School of Medicine, Stanford, California, USA.
Molecular Therapy (Impact Factor: 6.43). 11/2012; DOI: 10.1038/mt.2012.244
Source: PubMed

ABSTRACT Current efforts in nonviral gene therapy are plagued by a pervasive difficulty in sustaining therapeutic levels of delivered transgenes. Minicircles (plasmid derivatives with the same expression cassette but lacking a bacterial backbone) show sustained expression and hold promise for therapeutic use where persistent transgene expression is required. To characterize the widely-observed silencing process affecting expression of foreign DNA in mammals, we used a system in which mouse liver presented with either plasmid or minicircle consistently silences plasmid but not minicircle expression. We found that preferential silencing of plasmid DNA occurs at a nuclear stage that precedes transport of mRNA to the cytoplasm, evident from a consistent >25-fold minicircle/plasmid transcript difference observed in both nuclear and total RNA. Among possible mechanisms of nuclear silencing, our data favor chromatin-linked transcriptional blockage rather than targeted degradation, aberrant processing, or compromised mRNA transport. In particular, we observe dramatic enrichment of H3K27 trimethylation on plasmid sequences. Also, it appears that Pol II can engage the modified plasmid chromatin, potentially in a manner that is not productive in the synthesis of high levels of new transcript. We outline a scenario in which sustained differences at the chromatin level cooperate to determine the activity of foreign DNA.Molecular Therapy (2012); doi:10.1038/mt.2012.244.

0 Followers
 · 
114 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: For patients with hereditary retinal diseases, retinal gene therapy offers significant promise for the prevention of retinal degeneration. While adeno-associated virus (AAV)-based systems remain the most popular gene delivery method due to their high efficiency and successful clinical results, other delivery systems, such as non-viral nanoparticles (NPs) are being developed as additional therapeutic options. NP technologies come in several categories (e.g., polymer, liposomes, peptide compacted DNA), several of which have been tested in mouse models of retinal disease. Here, we discuss the key biochemical features of the different NPs that influence how they are internalized into cells, escape from endosomes, and are delivered into the nucleus. We review the primary mechanism of NP uptake by retinal cells and highlight various NPs that have been successfully used for in vivo gene delivery to the retina and RPE. Finally, we consider the various strategies that can be implemented in the plasmid DNA to generate persistent, high levels of gene expression.
    European Journal of Pharmaceutics and Biopharmaceutics 01/2015; DOI:10.1016/j.ejpb.2014.12.028 · 4.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: Nucleic-acid-based biopharmaceuticals enclose a remarkable potential for treating debilitating or life-threatening diseases that currently remain incurable. This promising area of research envisages the creation of state-of-the-art DNA vaccines, pluripotent cells or gene-based therapies, which can be used to overcome current issues. To achieve this goal, DNA minicircles are emerging as ideal nonviral vectors due to their safety and persistent transgene expression in either quiescent or actively dividing cells. Areas covered: This review focuses on the characteristics of minicircle DNA (mcDNA) technology and the current advances in their production. The possible modifications to further improve minicircle efficacy are also emphasized and discussed in light of recent advances. As a final point, the main therapeutic applications of mcDNA are summarized, with a special focus on pluripotent stem cells production and cancer therapy. Expert opinion: Achieving in-target and persistent transgene expression is a challenging issue that is of critical importance for a successful therapeutic outcome. The use of miniaturized mcDNA cassettes with additional modifications that increase and prolong expression may contribute to an improved generation of biopharmaceuticals. The unique features of mcDNA render it an attractive alternative to overcome current technical issues and to bridge the significant gap that exists between basic research and clinical applications.
    Expert Opinion on Biological Therapy 12/2014; 15(3). DOI:10.1517/14712598.2015.996544 · 3.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Adipose-derived stem cells (ASCs) hold promise for bone regeneration but possess inferior osteogenesis potential. Allotransplantation of ASCs engineered with the BMP2/VEGF-expressing baculoviruses into rabbits healed critical-size segmental bone defects. To translate the technology to clinical applications, we aimed to demonstrate massive bone healing in minipigs that more closely mimicked the clinical scenarios, using a new hybrid baculovirus system consisting of BacFLPo expressing the codon-optimized FLP recombinase (FLPo) and the substrate baculovirus harboring the transgene flanked by Frt sequences. Co-transduction of minipig ASCs (pASCs) with BacFLPo and the substrate baculovirus enabled transgene cassette excision, recombination and minicircle formation in ≈73.7% of pASCs, which substantially prolonged the transgene (BMP2 and VEGF) expression to 28 days. When encoding BMP2, the FLPo/Frt-based system augmented the pASCs osteogenesis. Allotransplantation of the BMP2/VEGF-expressing pASCs into minipigs healed massive segmental bone defects (30 mm in length) at the mid-diaphysis of femora, as evaluated by computed tomography, positron emission tomography, histology, immunohistochemical staining and biochemical testing. The defect size was ≈15% of femoral length in minipigs and was equivalent to ≈60-70 mm of femoral defect in humans, thus the healing using pASCs engineered with the FLPo/Frt-based baculovirus represented a remarkable advance for the treatment of massive bone defects. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Biomaterials 05/2015; 50. DOI:10.1016/j.biomaterials.2015.01.052 · 8.31 Impact Factor

Full-text (2 Sources)

Download
22 Downloads
Available from
Jun 28, 2014

Lia E Gracey Maniar