Article

Autoimmune Addison's disease.

Newcastle-upon-Tyne Hospitals NHS trust, Royal Victoria Infirmary, Endocrine Unit, Newcastle upon Tyne, NE1 4LP, United Kingdom. Electronic address: .
La Presse Médicale (Impact Factor: 1.17). 11/2012; DOI: 10.1016/j.lpm.2012.09.010
Source: PubMed

ABSTRACT Addison's disease is a rare autoimmune disorder. In the developed world, autoimmune adrenalitis is the commonest cause of primary adrenal insufficiency, where the majority of patients have circulating antibodies against the key steroidogenic enzyme 21-hydroxylase. A complex interplay of genetic, immunological and environmental factors culminates in symptomatic adrenocortical insufficiency, with symptoms typically developing over months to years. Biochemical evaluation and further targeted investigations must confirm primary adrenal failure and establish the underlying aetiology. The diagnosis of adrenocortical insufficiency will necessitate lifelong glucocorticoid and mineralocorticoid replacement therapy, aiming to emulate physiological patterns of hormone secretion to achieve well-being and good quality of life. Education of patients and healthcare professionals is essential to minimise the risk of a life-threatening adrenal crisis, which must be promptly recognised and aggressively managed when it does occur. This article provides an overview of our current understanding of the natural history and underlying genetic and immunological basis of this condition. Future research may reveal novel therapeutic strategies for patient management. Until then, optimisation of pharmacological intervention and continued emphasis on education and empowerment of patients should underpin the management of individuals with autoimmune Addison's disease.

1 Follower
 · 
120 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The concept that the gut microbiota serves as a virtual endocrine organ arises from a number of important observations. Evidence for a direct role arises from its metabolic capacity to produce and regulate multiple compounds that reach the circulation and act to influence the function of distal organs and systems. For example, metabolism of carbohydrates results in the production of short chain fatty acids (SCFAs), such as butyrate and propionate, which provide an important source of nutrients as well as regulatory control of the host digestive system. This influence over host metabolism is also seen in the ability of the prebiotic inulin is to influence production of relevant hormones such as glucagon like peptide-1 (GLP-1), peptide YY (PYY), ghrelin and leptin. Moreover, the probiotic L. rhamnosus PL60, which produces conjugated linoleic acid, has been shown to reduce body weight gain and white adipose tissue without effects on food intake. Manipulating the microbial composition of the gastrointestinal tract modulates plasma concentrations of tryptophan, an essential amino acid and precursor to serotonin, a key neurotransmitter within both the enteric and central nervous systems. Indirectly and through as yet unknown mechanisms, the gut microbiota exerts control over the hypothalamic-pituitary-adrenal axis (HPA). This is clear from studies on animals raised in a germ-free environment, who show exaggerated responses to psychological stress, which normalises following monocolonisation by certain bacterial species including B. infantis. It is tempting to speculate that therapeutic targeting of the gut microbiota may be useful in treating stress-related disorders and metabolic diseases.
    Molecular Endocrinology 06/2014; 28(8):me20141108. DOI:10.1210/me.2014-1108 · 4.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Adrenal insufficiency is the clinical manifestation of deficient production or action of glucocorticoids, with or without deficiency also in mineralocorticoids and adrenal androgens. It is a life-threatening disorder that can result from primary adrenal failure or secondary adrenal disease due to impairment of the hypothalamic-pituitary axis. Prompt diagnosis and management are essential. The clinical manifestations of primary adrenal insufficiency result from deficiency of all adrenocortical hormones, but they can also include signs of other concurrent autoimmune conditions. In secondary or tertiary adrenal insufficiency, the clinical picture results from glucocorticoid deficiency only, but manifestations of the primary pathological disorder can also be present. The diagnostic investigation, although well established, can be challenging, especially in patients with secondary or tertiary adrenal insufficiency. We summarise knowledge at this time on the epidemiology, causal mechanisms, pathophysiology, clinical manifestations, diagnosis, and management of this disorder.
    The Lancet 02/2014; 383(9935). DOI:10.1016/S0140-6736(13)61684-0 · 39.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Subclinical hypothyroidism (SCH) should be considered in two categories according to the elevation in serum thyroid-stimulating hormone (TSH) level: mildly increased TSH levels (4.0-10.0 mU/l) and more severely increased TSH value (>10 mU/l). An initially raised serum TSH, with FT4 within reference range, should be investigated with a repeat measurement of both serum TSH and FT4, along with thyroid peroxidase antibodies, preferably after a 2- to 3-month interval. Even in the absence of symptoms, replacement therapy with L-thyroxine is recommended for younger patients (<65-70 years) with serum TSH >10 mU/l. In younger SCH patients (serum TSH <10 mU/l) with symptoms suggestive of hypothyroidism, a trial of L-thyroxine replacement therapy should be considered. For such patients who have been started on L-thyroxine for symptoms attributed to SCH, response to treatment should be reviewed 3 or 4 months after a serum TSH within reference range is reached. If there is no improvement in symptoms, L-thyroxine therapy should generally be stopped. Age-specific local reference ranges for serum TSH should be considered in order to establish a diagnosis of SCH in older people. The oldest old subjects (>80-85 years) with elevated serum TSH ≤10 mU/l should be carefully followed with a wait-and-see strategy, generally avoiding hormonal treatment. If the decision is to treat SCH, then oral L-thyroxine, administered daily, is the treatment of choice. The serum TSH should be re-checked 2 months after starting L-thyroxine therapy, and dosage adjustments made accordingly. The aim for most adults should be to reach a stable serum TSH in the lower half of the reference range (0.4-2.5 mU/l). Once patients with SCH are commenced on L-thyroxine treatment, then serum TSH should be monitored at least annually thereafter.
    12/2013; 2(4):215-228. DOI:10.1159/000356507