Direct FGF-2 Gene Transfer via Recombinant Adeno-Associated Virus Vectors Stimulates Cell Proliferation, Collagen Production, and the Repair of Experimental Lesions in the Human ACL

Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany.
The American Journal of Sports Medicine (Impact Factor: 4.36). 11/2012; 41(1). DOI: 10.1177/0363546512465840
Source: PubMed


BACKGROUND:Basic fibroblast growth factor (FGF-2) is a powerful stimulator of fibroblast proliferation and type I/III collagen production. HYPOTHESIS:Overexpression of FGF-2 via direct recombinant adeno-associated virus (rAAV) vector-mediated gene transfer enhances the healing of experimental lesions to the human anterior cruciate ligament (ACL). STUDY DESIGN:Controlled laboratory study. METHODS:rAAV vectors carrying a human FGF-2 sequence or the lacZ marker gene were applied to primary human ACL fibroblasts in vitro and to intact or experimentally injured human ACL explants in situ to evaluate the efficacy and duration of transgene expression and the potential effects of FGF-2 treatment upon the proliferative, metabolic, and regenerative activities in these systems. RESULTS:Sustained, effective dose-dependent lacZ expression was achieved in all systems tested (up to 96% ± 2% in vitro and 80%-85% in situ for at least 30 days). rAAV allowed for continuous FGF-2 production both in vitro and in the intact ACL in situ (32.7 ± 1.4 and 33.1 ± 0.8 pg/mL/24 h, respectively, ie, up to 41-fold more than in the controls at day 30; always P ≤ .001), leading to significantly and durably enhanced levels of proliferation and type I/III collagen production vis-à-vis lacZ (at least 3- and 4-fold increases at day 30, respectively; always P ≤ .001). Most notably, rAAV FGF-2 promoted a significant, long-term production of the factor in experimental ACL lesions (92.7 ± 3.9 pg/mL/24 h, ie, about 5-fold more than in the controls; P ≤ .001) associated with enhanced levels of proliferation and type I/III collagen synthesis (at least 2- and 4-fold increases at day 30, respectively; always P ≤ .001). Remarkably, the FGF-2 treatment allowed for a decrease in the amplitude of such lesions possibly because of the increased expression in contractile α-smooth muscle actin, ligament-specific transcription factor scleraxis, and nuclear factor-κB for proliferation and collagen deposition, which are all markers commonly induced in response to injury. CONCLUSION:Efficient, stable FGF-2 expression via rAAV enhances the healing of experimental human ACL lesions by activating key cellular and metabolic processes. CLINICAL RELEVANCE:This approach has potential value for the development of novel, effective treatments for ligament reconstruction.

Download full-text


Available from: Magali Cucchiarini, Apr 10, 2014
  • Source
    • "Furthermore, there are currently many studies investigating molecular composition (gene or protein levels) of the structures used for ACL repair in order to identify the best structure for a quicker rehabilitation [31]. Strategies to enhance the ACL healing process through overexpression of fibroblast growth factor (a powerful stimulator of fibroblast proliferation and type I/III collagen production) via direct recombinant adeno-associated virus vector–mediated gene transfer has also been investigated [32]. The results have a potential value for the development of novel and effective treatments for ligament reconstruction. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background A dynamic sub-maximum exercise with the same absolute intensity, performed with different muscle groups, may present exacerbated cardiorespiratory responses. Therefore, cardiorespiratory responses to unilateral exercise may identify bilateral differences. The purpose of this study was to verify whether the cardiorespiratory responses to lower limb exercise display counter-lateral differences, and if they could be used to assist athletes and health professionals involved in rehabilitation. Methods Nine individuals participated in this cross-sectional study. They had been treated in a private rehabilitation clinic and submitted to intra-articular reconstruction of the anterior cruciate ligament. The cycling exercise with the same sub-maximal intensity and with one lower limb was used to gather data. Cardiorespiratory responses to exercise were compared between exercises performed with the involved and uninvolved limb after five minutes of exercise. Results Cardiorespiratory responses to exercise performed with the involved limb presented higher values after five minutes of cycling: oxygen uptake (+7%), carbon dioxide production (+10%), minute ventilation (+20%), breathing frequency (+19%), ventilatory equivalent for oxygen (+14%), end-tidal pressure of O2 oxygen (+4%), end-tidal pressure of O2 carbon dioxide (-9%) and heart rate (+9%). Conclusions The exacerbated responses, including increase of the ventilatory equivalent and decrease of end-tidal pressure of carbon dioxide, indicate that this exercise protocol may be useful in the characterization of the functional deficit of the surgical limb during rehabilitation.
    BMC Musculoskeletal Disorders 05/2014; 15(1):163. DOI:10.1186/1471-2474-15-163 · 1.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rupture of the anterior cruciate ligament (ACL) is one of the most common ligamentous injuries of the knee. Limitations of allografts and autografts in ACL reconstruction as well as recent advancements in biology and materials science have spurred interest in developing tissue engineered ACL replacements that have the potential to mimic the native ACL in terms of both biological and mechanical properties. This paper reviews the current literature regarding contemporary tissue engineering strategies. The four basic components of tissue engineering: biomaterial scaffolds, cell sources, growth factors, and mechanical stimuli, as applied to the development of tissue engineered ACL replacement grafts, will be systematically addressed. In addition, animal models that have been used to test these tissue engineered ACL replacements will also be reviewed. To date, there is no tissue-engineered ACL construct that has been successfully implanted in humans. We expect that continued progress in designing a viable tissue-engineered ACL replacement will accompany rapidly advancing techniques in materials science and biology.
    Journal of Biomedical Materials Research Part A 06/2013; 102(5). DOI:10.1002/jbm.a.34820 · 3.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Natural biological functional scaffolds, consisting of biological materials filled with promoting elements, provide a promising strategy for the regeneration of peripheral nerve defects. Collagen conduits have been used widely due to their excellent biological properties. Linear ordered collagen scaffold (LOCS) fibers are good lumen fillers that can guide nerve regeneration in ordered direction. In addition, basic fibroblast growth factor (bFGF) is important in the recovery of nerve injury. However, the traditional method for delivering bFGF to the lesion site has no long-term effect because of its short half-life and rapid diffusion. Therefore, we fused a specific collagen-binding domain (CBD) peptide to the N-terminal of native basic fibroblast growth factor (NAT-bFGF) to retain bFGF on the collagen scaffolds. In this study, a natural biological functional scaffold was constructed using collagen tubes filled with collagen-binding bFGF (CBD-bFGF)-loaded LOCS to promote regeneration in a 5-mm rat sciatic nerve transection model. Functional evaluation, histological investigation, and morphometric analysis indicated that the natural biological functional scaffold retained more bFGF at the injury site, guided axon growth, and promoted nerve regeneration as well as functional restoration.
    Tissue Engineering Part A 11/2013; 20(7). DOI:10.1089/ten.TEA.2013.0158 · 4.64 Impact Factor
Show more