Direct FGF-2 Gene Transfer via Recombinant Adeno-Associated Virus Vectors Stimulates Cell Proliferation, Collagen Production, and the Repair of Experimental Lesions in the Human ACL

Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany.
The American Journal of Sports Medicine (Impact Factor: 4.7). 11/2012; 41(1). DOI: 10.1177/0363546512465840
Source: PubMed

ABSTRACT BACKGROUND:Basic fibroblast growth factor (FGF-2) is a powerful stimulator of fibroblast proliferation and type I/III collagen production. HYPOTHESIS:Overexpression of FGF-2 via direct recombinant adeno-associated virus (rAAV) vector-mediated gene transfer enhances the healing of experimental lesions to the human anterior cruciate ligament (ACL). STUDY DESIGN:Controlled laboratory study. METHODS:rAAV vectors carrying a human FGF-2 sequence or the lacZ marker gene were applied to primary human ACL fibroblasts in vitro and to intact or experimentally injured human ACL explants in situ to evaluate the efficacy and duration of transgene expression and the potential effects of FGF-2 treatment upon the proliferative, metabolic, and regenerative activities in these systems. RESULTS:Sustained, effective dose-dependent lacZ expression was achieved in all systems tested (up to 96% ± 2% in vitro and 80%-85% in situ for at least 30 days). rAAV allowed for continuous FGF-2 production both in vitro and in the intact ACL in situ (32.7 ± 1.4 and 33.1 ± 0.8 pg/mL/24 h, respectively, ie, up to 41-fold more than in the controls at day 30; always P ≤ .001), leading to significantly and durably enhanced levels of proliferation and type I/III collagen production vis-à-vis lacZ (at least 3- and 4-fold increases at day 30, respectively; always P ≤ .001). Most notably, rAAV FGF-2 promoted a significant, long-term production of the factor in experimental ACL lesions (92.7 ± 3.9 pg/mL/24 h, ie, about 5-fold more than in the controls; P ≤ .001) associated with enhanced levels of proliferation and type I/III collagen synthesis (at least 2- and 4-fold increases at day 30, respectively; always P ≤ .001). Remarkably, the FGF-2 treatment allowed for a decrease in the amplitude of such lesions possibly because of the increased expression in contractile α-smooth muscle actin, ligament-specific transcription factor scleraxis, and nuclear factor-κB for proliferation and collagen deposition, which are all markers commonly induced in response to injury. CONCLUSION:Efficient, stable FGF-2 expression via rAAV enhances the healing of experimental human ACL lesions by activating key cellular and metabolic processes. CLINICAL RELEVANCE:This approach has potential value for the development of novel, effective treatments for ligament reconstruction.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Direct application of therapeutic gene vectors derived from the adeno-associated virus (AAV) might be beneficial to improve the healing of meniscal tears. To test the ability of recombinant AAV (rAAV) to overexpress the potent transforming growth factor-β (TGF-β) in primary cultures of human meniscal fibrochondrocytes, in human meniscal explants, and in experimental human meniscal lesions as a new tool to enhance meniscal repair. Controlled laboratory study. The effects of the candidate treatment on the proliferative and metabolic activities of meniscal cells were monitored in vitro for up to 21 days and in situ in intact and injured human menisci for up to 15 days using biochemical, immunohistochemical, histological, and histomorphometric analyses. Efficient production of TGF-β via rAAV was achieved in vitro and in situ, both in the intact and injured meniscus. Application of the rAAV TGF-β vector stimulated the levels of cell proliferation and matrix synthesis (type I collagen) compared with control gene transfer in all systems tested, especially in situ in regions of poor healing capacity and in sites of meniscal injury. No adverse effects of the candidate treatment were observed at the level of osseous differentiation, as tested by immunodetection of type X collagen. Most remarkably, a significant reduction of the amplitude of meniscal tears was noted after TGF-β treatment, an effect that was associated with increased expression levels of the α-smooth muscle actin contractile marker. Overexpression of TGF-β via rAAV gene transfer is capable of modulating the reparative activities of human meniscal cells, allowing for the healing of meniscal lesions by convenient injection in sites of injury. Direct gene-based approaches using rAAV have strong potential to develop new therapeutic options that aim at treating human meniscal defects. © 2015 The Author(s).
    The American Journal of Sports Medicine 02/2015; DOI:10.1177/0363546514567063 · 4.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Osteoarthritis (OA) is a major chronic disease of the joints, affecting mostly the articular cartilage but also all the surrounding tissues including the subchondral bone, synovium, meniscus, tendons, and ligaments. Despite the availability in the clinic of a variety of therapeutic approaches, there is crucial need for improved treatment to protect and regenerate the cartilage with full integrity and function. In this regard, combining gene, cell, and tissue engineering-based procedures is an attractive concept for novel, effective therapy against AO, a slow, progressive, and irreversible disease. Here, we provide an overview of the treatment available for management of the progression of the OA phenotype and discuss current progress and remaining challenges for potential future treatment of patients.
    Current Rheumatology Reports 10/2014; 16(10):449. DOI:10.1007/s11926-014-0449-0 · 2.45 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Suture repair of the anterior cruciate ligament (ACL) has been widely abandoned in favor of ACL reconstruction, largely because of the high rates of failure and unreliability of the outcomes after suture repair. However, there have been recent basic science studies that suggest that combining a suture repair with a biological adjunct may improve the results of suture repair of the ACL, with several studies in large animal models showing equivalent strength of an ACL treated with bio-enhanced repaired to that of an ACL graft at 3, 6, and 12 months after surgery. In addition, the groups treated with bio-enhanced repair had significantly less osteoarthritis when compared with the animals undergoing ACL reconstruction. These findings have led to a renewed interest in bio-enhanced primary repair as a way to make repair of the ACL a viable option for a select group of patients in the future.
    Arthroscopy The Journal of Arthroscopic and Related Surgery 01/2015; DOI:10.1016/j.arthro.2014.11.016 · 3.19 Impact Factor


Available from
Jun 4, 2014

Similar Publications