Article

The dorsal stream contribution to phonological retrieval in object naming.

1 Moss Rehabilitation Research Institute, Einstein Healthcare Network, Elkins Park, PA 19027, USA.
Brain (Impact Factor: 10.23). 11/2012; DOI: 10.1093/brain/aws300
Source: PubMed

ABSTRACT Meaningful speech, as exemplified in object naming, calls on knowledge of the mappings between word meanings and phonological forms. Phonological errors in naming (e.g. GHOST named as 'goath') are commonly seen in persisting post-stroke aphasia and are thought to signal impairment in retrieval of phonological form information. We performed a voxel-based lesion-symptom mapping analysis of 1718 phonological naming errors collected from 106 individuals with diverse profiles of aphasia. Voxels in which lesion status correlated with phonological error rates localized to dorsal stream areas, in keeping with classical and contemporary brain-language models. Within the dorsal stream, the critical voxels were concentrated in premotor cortex, pre- and postcentral gyri and supramarginal gyrus with minimal extension into auditory-related posterior temporal and temporo-parietal cortices. This challenges the popular notion that error-free phonological retrieval requires guidance from sensory traces stored in posterior auditory regions and points instead to sensory-motor processes located further anterior in the dorsal stream. In a separate analysis, we compared the lesion maps for phonological and semantic errors and determined that there was no spatial overlap, demonstrating that the brain segregates phonological and semantic retrieval operations in word production.

1 Bookmark
 · 
158 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stroke aphasia is a multidimensional disorder in which patient profiles reflect variation along multiple behavioural continua. We present a novel approach to separating the principal aspects of chronic aphasic performance and isolating their neural bases. Principal components analysis was used to extract core factors underlying performance of 31 participants with chronic stroke aphasia on a large, detailed battery of behavioural assessments. The rotated principle components analysis revealed three key factors, which we labelled as phonology, semantic and executive/cognition on the basis of the common elements in the tests that loaded most strongly on each component. The phonology factor explained the most variance, followed by the semantic factor and then the executive-cognition factor. The use of principle components analysis rendered participants' scores on these three factors orthogonal and therefore ideal for use as simultaneous continuous predictors in a voxel-based correlational methodology analysis of high resolution structural scans. Phonological processing ability was uniquely related to left posterior perisylvian regions including Heschl's gyrus, posterior middle and superior temporal gyri and superior temporal sulcus, as well as the white matter underlying the posterior superior temporal gyrus. The semantic factor was uniquely related to left anterior middle temporal gyrus and the underlying temporal stem. The executive-cognition factor was not correlated selectively with the structural integrity of any particular region, as might be expected in light of the widely-distributed and multi-functional nature of the regions that support executive functions. The identified phonological and semantic areas align well with those highlighted by other methodologies such as functional neuroimaging and neurostimulation. The use of principle components analysis allowed us to characterize the neural bases of participants' behavioural performance more robustly and selectively than the use of raw assessment scores or diagnostic classifications because principle components analysis extracts statistically unique, orthogonal behavioural components of interest. As such, in addition to improving our understanding of lesion-symptom mapping in stroke aphasia, the same approach could be used to clarify brain-behaviour relationships in other neurological disorders.
    Brain 10/2014; · 10.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tools pose a challenge to the need to select actions appropriate for task goals and environmental constraints. For many tools (e.g., calculator), actions for " using " and " grasping-to-move " conflict with each other and may compete during selection. To date, little is known about the mechanisms that enable selection between possible tool actions or their neural substrates. The study of patients with chronic left hemisphere stroke, many of whom are deficient in tool-use action (apraxic), provides an opportunity to elucidate these issues. Here, 31 such patients pantomimed or recognized tool use actions for " conflict " and " non-conflict " tools. Voxel-based lesion-symptom mapping (VLSM), lesion subtraction, and tractographic overlap analyses were used to determine brain regions necessary for selecting among tool-directed actions. Lesions to posterior middle temporal gyrus (pMTG) and anterior intraparietal sulcus (aIPS) tended to impair production of use actions similarly for both conflict and non-conflict tools. By contrast, lesions to the supramarginal gyrus (SMG), inferior frontal gyrus (IFG)/anterior insula, and superior longitudinal fasciculus (SLF) specifically impaired production of use actions for conflict tools. Patients' errors on conflict tools suggested inappropriate selection of grasping actions and difficulty selecting single actions. Use/grasp conflict had no effect on action recognition. We suggest that the SMG/ SLF/IFG pathway implements biased competition between possible tool actions, while aIPS and pMTG compute the structure-based and skilled use actions, respectively, that constitute input to this competitive process. This is the first study to demonstrate a reliable link between a characteristic of single tools (i.e., their association with different use and grasp actions) and action selection difficulties. Additionally, the data allow us to posit an SMG-involved subtype of apraxia characterized by an inability to resolve action competition.
    Cortex 02/2015; 65(April):65-82. · 6.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The left putamen is known to be important for speech production, but some patients with left putamen damage can produce speech remarkably well. We investigated the neural mechanisms that support this recovery by using a combination of techniques to identify the neural regions and pathways that compensate for loss of the left putamen during speech production. First, we used fMRI to identify the brain regions that were activated during reading aloud and picture naming in a patient with left putamen damage. This revealed that the patient had abnormally high activity in the left premotor cortex. Second, we used dynamic causal modeling of the patient's fMRI data to understand how this premotor activity influenced other speech production regions and whether the same neural pathway was used by our 24 neurologically normal control subjects. Third, we validated the compensatory relationship between putamen and premotor cortex by showing, in the control subjects, that lower connectivity through the putamen increased connectivity through premotor cortex. Finally, in a lesion-deficit analysis, we demonstrate the explanatory power of our fMRI results in new patients who had damage to the left putamen, left premotor cortex, or both. Those with damage to both had worse reading and naming scores. The results of our four-pronged approach therefore have clinical implications for predicting which patients are more or less likely to recover their speech after left putaminal damage.
    Journal of Neuroscience 10/2014; 34(43):14338-48. · 6.75 Impact Factor

Full-text

Download
49 Downloads
Available from
May 20, 2014