Rather than by direct acquisition via lateral gene transfer, GHF5 cellulases were passed on from early Pratylenchidae to root-knot and cyst nematodes

BMC Evolutionary Biology (Impact Factor: 3.37). 11/2012; 12(1):221. DOI: 10.1186/1471-2148-12-221
Source: PubMed


Plant parasitic nematodes are unusual Metazoans as they are equipped with genes that allow for symbiont-independent degradation of plant cell walls. Among the cell wall-degrading enzymes, glycoside hydrolase family 5 (GHF5) cellulases are relatively well characterized, especially for high impact parasites such as root-knot and cyst nematodes. Interestingly, ancestors of extant nematodes most likely acquired these GHF5 cellulases from a prokaryote donor by one or multiple lateral gene transfer events. To obtain insight into the origin of GHF5 cellulases among evolutionary advanced members of the order Tylenchida, cellulase biodiversity data from less distal family members were collected and analyzed.

Single nematodes were used to obtain (partial) genomic sequences of cellulases from representatives of the genera Meloidogyne, Pratylenchus, Hirschmanniella and Globodera. Combined Bayesian analysis of ≈ 100 cellulase sequences revealed three types of catalytic domains (A, B, and C). Represented by 84 sequences, type B is numerically dominant, and the overall topology of the catalytic domain type shows remarkable resemblance with trees based on neutral (= pathogenicity-unrelated) small subunit ribosomal DNA sequences. Bayesian analysis further suggested a sister relationship between the lesion nematode Pratylenchus thornei and all type B cellulases from root-knot nematodes. Yet, the relationship between the three catalytic domain types remained unclear. Superposition of intron data onto the cellulase tree suggests that types B and C are related, and together distinct from type A that is characterized by two unique introns.

All Tylenchida members investigated here harbored one or multiple GHF5 cellulases. Three types of catalytic domains are distinguished, and the presence of at least two types is relatively common among plant parasitic Tylenchida. Analysis of coding sequences of cellulases suggests that root-knot and cyst nematodes did not acquire this gene directly by lateral genes transfer. More likely, these genes were passed on by ancestors of a family nowadays known as the Pratylenchidae.

Download full-text


Available from: Sven van den Elsen, Oct 07, 2015
35 Reads
  • Source
    • "Another family of cellulases is represented in other groups of plant-parasitic nematodes. All members of clade 12 of phylum Nematoda analysed to date harbor one or multiple GH5 cellulases [22]. In the Tylenchid plant parasites this family of GH5 cellulases is thought to have been derived from bacteria [22] while in the case of Pristonchus spp. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Horizontal gene transfer (HGT) has been suggested as the mechanism by which various plant parasitic nematode species have obtained genes important in parasitism. In particular, cellulase genes have been acquired by plant parasitic nematodes that allow them to digest plant cell walls. Unlike the typical glycoside hydrolase (GH) family 5 cellulase genes which are found in several nematode species from the order Tylenchida, members of the GH45 cellulase have only been identified in a cluster including the families Parasitaphelenchidae (with the pinewood nematode Bursaphelenchus xylophilus) and Aphelenchoididae, and their origins remain unknown. In order to investigate the distribution and evolution of GH45 cellulase genes in nematodes and fungi we performed a wide ranging screen for novel putative GH45 sequences. This revealed that the sequences are widespread mainly in Ascomycetous fungi and have so far been found in a single major nematode lineage. Close relationships between the sequences from nematodes and fungi were found through our phylogenetic analyses. An intron position is shared by sequences from Bursaphelenchus nematodes and several Ascomycetous fungal species. The close phylogenetic relationships and conserved gene structure between the sequences from nematodes and fungi strongly supports the hypothesis that nematode GH45 cellulase genes were acquired via HGT from fungi. The rapid duplication and turnover of these genes within Bursaphelenchus genomes demonstrate that useful sequences acquired via HGT can become established in the genomes of recipient organisms and may open novel niches for these organisms to exploit.
    BMC Evolutionary Biology 04/2014; 14(1):69. DOI:10.1186/1471-2148-14-69 · 3.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Root-knot nematodes (RKNs) (Meloidogyne spp.) are obligate endoparasites of major worldwide economic importance. They exhibit a wide continuum of variation in their reproductive strategies, ranging from amphimixis to obligatory mitotic parthenogenesis. Molecular phylogenetic studies have highlighted divergence between mitotic and meiotic parthenogenetic RKN species and probable interspecific hybridization as critical steps in their speciation and diversification process. The recent completion of the genomes of two RKNs, Meloidogyne hapla and Meloidogyne incognita, that exhibit striking differences in their mode of reproduction (with and without sex, respectively), their geographic distribution, and their host range has opened the way for deciphering the evolutionary significance of (a)sexual reproduction in these parasites. Accumulating evidence suggests that whole-genome duplication (in M. incognita) and horizontal gene transfers (HGTs) represent major forces that have shaped the genome of current RKN species and may account for the extreme adaptive capacities and parasitic success of these nematodes. Expected final online publication date for the Annual Review of Phytopathology Volume 51 is August 04, 2013. Please see for revised estimates.
    Annual Review of Phytopathology 05/2013; 51(1). DOI:10.1146/annurev-phyto-082712-102300 · 9.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In 2000 Siddiqi formulated a hypothesis stating that root-knot nematodes (Meloidogyne spp.) constitute a branch arising from yet another important group of plant parasites, the migratory Pratylenchidae. This hypothesis was solely based on morphological characteristics. Ribosomal DNA (rDNA) sequence analysis supports this hypothesis in its broad sense, but the more precise question about the identity of a migratory Pratylenchidae representative being closest to the most basal Meloidogyne species could not be addressed due to a lack of backbone resolution (Holterman et al., 2009). Here we present an extended small subunit rDNA sequence analysis and a data set of partial RNA polymerase II sequences from Pratylenchidae and basal Meloidogynidae. Our data point at members of the genus Pratylenchus as being closest to the common ancestor of the root-knot nematodes, but it was not possible unequivocally to identify a candidate lesion nematode species. Pratylenchus is a species-rich genus (ca 70 valid species), and we suggest that the species closest to the most basal root-knot nematode should be sought outside of the group of relatively well-characterised, agronomically relevant, species.
    Nematology 06/2013; 16 (2014)(2):125-136. DOI:10.1163/15685411-00002750 · 1.24 Impact Factor
Show more