Article

A study of Chitosan and c-di-GMP as mucosal adjuvants for intranasal influenza H5N1 vaccine

Influenza Centre, The Gade Institute, University of Bergen, Bergen, Norway Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany University of Siena, Siena, Italy VisMederi, Siena, Italy Archimedes Development Ltd., Reading, UK Department of Research and Development, Haukeland University Hospital, Bergen, Norway.
Influenza and Other Respiratory Viruses (Impact Factor: 1.9). 11/2012; 7(6). DOI: 10.1111/irv.12056
Source: PubMed

ABSTRACT Please cite this paper as: Svindland et al. (2012) A study of Chitosan and c-di-GMP as mucosal adjuvants for intranasal influenza H5N1 vaccine. Influenza and Other Respiratory Viruses 10.1111/irv.12056000(000), 000-000. Background  Highly pathogenic avian influenza A/H5N1 virus remains a potential pandemic threat, and it is essential to continue vaccine development against this subtype. A local mucosal immune response in the upper respiratory tract may stop influenza transmission. It is therefore important to develop effective intranasal pandemic influenza vaccines that induce mucosal immunity at the site of viral entry. Objectives  We evaluated the humoral and cellular immune responses of two promising mucosal adjuvants (Chitosan and c-di-GMP) for intranasal influenza H5N1 vaccine in a murine model. Furthermore, we evaluated the concept of co-adjuvanting an experimental adjuvant (c-di-GMP) with chitosan. Methods  BALB/c mice were intranasally immunised with two doses of subunit NIBRG-14 (H5N1) vaccine (7·5, 1·5 or 0·3 μg haemagglutinin (HA) adjuvanted with chitosan (CSN), c-di-GMP or both adjuvants. Results  All adjuvant formulations improved the serum and local antibody responses, with the highest responses observed in the 7·5 μg HA CSN and c-di-GMP-adjuvanted groups. The c-di-GMP provided dose sparing with protective single radial haemolysis (SRH), and haemagglutination inhibition (HI) antibody responses found in the 0·3 μg HA group. CSN elicited a Th2 response, whereas c-di-GMP induced higher frequencies of virus-specific CD4(+) T cells producing one or more Th1 cytokines (IFN-γ(+) , IL-2(+) , TNF-α(+) ). A combination of the two adjuvants demonstrated effectiveness at 7·5 μg HA and triggered a more balanced Th cytokine profile. Conclusion  These data show that combining adjuvants can modulate the Th response and in combination with ongoing studies of adjuvanted intranasal vaccines will dictate the way forward for optimal mucosal influenza vaccines.

Download full-text

Full-text

Available from: Geir Bredholt, Oct 03, 2014
2 Followers
 · 
139 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Subunit/split influenza vaccines are less reactogenic compared with the whole virus vaccines. However, their immunogenicity is relatively low and thus required proper adjuvant and/or delivery vehicle for immunogenicity enhancement. Influenza vaccines administered intramuscularly induce minimum, if any, mucosal immunity at the respiratory mucosa which is the prime site of the infection. In this study, chitosan (CS) nanoparticles were prepared by ionic cross-linking of the CS with sodium tripolyphosphate (TPP) at the CS/TPP ratio of 1:0.6 using 2 h mixing time. The CS/TPP nanoparticles were used as delivery vehicle of an intranasal influenza vaccine made of hemagglutinin (HA)-split influenza virus product. Innocuousness, immunogenicity, and protective efficacy of the CS/TPP-HA vaccine were tested in influenza mouse model in comparison with the antigen alone vaccine. The CS/TPP-HA nanoparticles had required characteristics including nano-sizes, positive charges, and high antigen encapsulation efficiency. Mice that received two doses of the CS/TPP-HA vaccine intranasally showed no adverse symptoms indicating the vaccine innocuousness. The animals developed higher systemic and mucosal antibody responses than vaccine made of the HA-split influenza virus alone. The CS/TPP-HA vaccine could induce also a cell-mediated immune response shown as high numbers of IFN-γ-secreting cells in spleens while the HA vaccine alone could not. Besides, the CS nanoparticle encapsulated HA-split vaccine reduced markedly the influenza morbidity and also conferred 100% protective rate to the vaccinated mice against lethal influenza virus challenge. Overall results indicated that the CS nanoparticles invented in this study is an effective and safe delivery vehicle/adjuvant for the influenza vaccine.
    AAPS PharmSciTech 12/2013; DOI:10.1208/s12249-013-0058-7 · 1.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Annually influenza virus infections are responsible for hospitalization and mortality, especially in high risk groups. Constant antigenic changes in seasonal influenza viruses resulted from antigenic shifts and antigenic drifts, enable emerging of novel virus subtypes that may reduce current vaccine efficacy and impose the continuous revision of vaccine component. Currently available vaccines are usually limited by their production processes in terms of rapid adaptation to new circulating subtypes in high quantities meeting the global demand. Thus, new approaches to rapidly manufacture high yields of influenza vaccines are required. New technologies to reach maximal protection with minimal vaccine doses also need to be developed.
    Vaccine 04/2014; 32(26). DOI:10.1016/j.vaccine.2014.04.011 · 3.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Annually influenza virus infections are responsible for hospitalization and mortality, especially in high risk groups. Constant antigenic changes in seasonal influenza viruses resulted from antigenic shifts and antigenic drifts, enable emerging of novel virus subtypes that may reduce current vaccine efficacy and impose the continuous revision of vaccine component. Currently available vaccines are usually limited by their production processes in terms of rapid adaptation to new circulating subtypes in high quantities meeting the global demand. Thus, new approaches to rapidly manufacture high yields of influenza vaccines are required. New technologies to reach maximal protection with minimal vaccine doses also need to be developed. In this study, we evaluated the systemic and local immunogenicity of a new double-adjuvanted influenza vaccine administered at the site of infection, the respiratory tract. This vaccine combines a plant-produced H1N1 influenza hemagglutinin antigen (HAC1), a silica nanoparticle-based (SiO2) drug delivery system and the mucosal adjuvant candidate bis-(3′,5′)-cyclic dimeric guanosine monophosphate (c-di-GMP). Mice were vaccinated by intratracheal route with HAC1/SiO2 or HAC1/c-di-GMP (single-adjuvanted vaccine) or HAC1/SiO2/c-di-GMP (double-adjuvanted vaccine) and evaluated for target-specific immune responses, such as hemagglutination inhibition and hemagglutinin-specific IgG titers, as well as local antibody (IgG and IgA) titers in the bronchoalveolar lavage (BAL). Furthermore, the HAC1-specific T-cell re-stimulation potential was assessed using precision-cut lung slices (PCLS) of vaccinated mice. The double-adjuvanted vaccine induced high systemic antibody responses comparable to the systemic vaccination control. In addition, it induced local IgG and IgA responses in the BAL. Furthermore, HAC1 induced a local T-cell response demonstrated by elevated IL-2 and IFN-γ levels in PCLS of c-di-GMP-vaccinated mice upon re-stimulation. Overall, the present study showed the potential of the double-adjuvanted vaccine to induce systemic humoral immune responses in intratracheally vaccinated mice. Furthermore, it induced a strong mucosal immune response, with evidence of antigen-primed T-cells in the lung.