Article

Lipid mediators in plasma of autism spectrum disorders

Lipids in Health and Disease (Impact Factor: 2.31). 11/2012; 11(1):160. DOI: 10.1186/1476-511X-11-160
Source: PubMed

ABSTRACT Background
Inflammation is increasingly recognized as being of both physiological and pathological importance in the immature brain. Cerebellar pathology occurs in autism, as a neurodevelopmental disorder with genetic and environmental origins. The genesis of this disorder is still not understood but inflammation in utero or early in childhood is an environmental risk factor.

Methods
Prostaglandin E2 (PGE2), cysteinyl leukotriene as two important lipid mediators together with 8 isoprostane as marker of oxidative stress were measured using ELISA in plasma of 20 male autistic patients compared to 19 age and gender matching control participants.

Results
PGE2, leukotrienes and isoprostanes recorded significantly elevated levels in autistics compared to controls. Role of these measured parameters in inflammation and autoimmunity as two etiological factors in autism were discussed in details.

Conclusion
Receiver Operating Characteristic (ROC) curve analysis shows satisfactory values of area under the curve (AUC) which could reflect the high degree of specificity and sensitivity of the altered PGE2, leukotrienes and isoprostanes as predictive biomarkers in autistic patients from Saudi Arabia.

Download full-text

Full-text

Available from: Laila Y Al-Ayadhi, Feb 26, 2014
1 Follower
 · 
134 Views
  • Source
    • "The authors identified four main mechanisms that have been increasingly studied during the past decade: immunologic/inflammation, oxidative stress, environmental toxicants, and mitochondrial abnormalities. In addition, there is accumulating research on the lipid, GI systems, microglial activation, and the microbiome, and how these can also contribute to generating biomarkers associated with ASD (45, 46). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Autism spectrum disorders (ASDs) are complex, heterogeneous disorders caused by an interaction between genetic vulnerability and environmental factors. In an effort to better target the underlying roots of ASD for diagnosis and treatment, efforts to identify reliable biomarkers in genetics, neuroimaging, gene expression, and measures of the body's metabolism are growing. For this article, we review the published studies of potential biomarkers in autism and conclude that while there is increasing promise of finding biomarkers that can help us target treatment, there are none with enough evidence to support routine clinical use unless medical illness is suspected. Promising biomarkers include those for mitochondrial function, oxidative stress, and immune function. Genetic clusters are also suggesting the potential for useful biomarkers.
    Frontiers in Psychiatry 08/2014; 5:100. DOI:10.3389/fpsyt.2014.00100
  • Source
    • "We consider this result at least partially validated by the recent finding that HDAC1 inhibitors ameliorate social cognition and cell adhesion molecule plasticity deficits in a rodent model of autism spectrum disorder [38]. Similarly, we consider the association between prostaglandin-endoperoxide synthase 1 (PTGS1) and AUTSX2 partially validated by the finding that significantly elevated levels of prostaglandin E2 (PGE2) have been found in autistic patients [39]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The development of new therapies for orphan genetic diseases represents an extremely important medical and social challenge. Drug repositioning, i.e. finding new indications for approved drugs, could be one of the most cost- and time-effective strategies to cope with this problem, at least in a subset of cases. Therefore, many computational approaches based on the analysis of high throughput gene expression data have so far been proposed to reposition available drugs. However, most of these methods require gene expression profiles directly relevant to the pathologic conditions under study, such as those obtained from patient cells and/or from suitable experimental models. In this work we have developed a new approach for drug repositioning, based on identifying known drug targets showing conserved anti-correlated expression profiles with human disease genes, which is completely independent from the availability of 'ad hoc' gene expression data-sets. By analyzing available data, we provide evidence that the genes displaying conserved anti-correlation with drug targets are antagonistically modulated in their expression by treatment with the relevant drugs. We then identified clusters of genes associated to similar phenotypes and showing conserved anticorrelation with drug targets. On this basis, we generated a list of potential candidate drug-disease associations. Importantly, we show that some of the proposed associations are already supported by independent experimental evidence. Our results support the hypothesis that the identification of gene clusters showing conserved anticorrelation with drug targets can be an effective method for drug repositioning and provide a wide list of new potential drug-disease associations for experimental validation.
    BMC Bioinformatics 10/2013; 14(1):288. DOI:10.1186/1471-2105-14-288 · 2.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The incidence of childhood neurodevelopmental disorders, which include autism, attention deficit hyperactivity disorders, and apraxia, are increasing worldwide and have a profound impact on these individuals’ behaviors, cognitive skills, mood and self-esteem. While the etiology of these disorders are unclear, they often accompany genetic and biochemical abnormalities resulting in cognitive and communication difficulties. Because cognitive and neural development require essential fatty acids (particularly long chain ω-3 fatty acids often lacking in mother’s and children’s diets) during critical growth periods, the potential behavior-modifying effects of these fatty acids as “brain nutrients” has attracted considerable attention. Additionally, there is compelling evidence for increased oxidative stress, altered antioxidant defenses, and neuroinflammation in these children. The purpose of this commentary is to provide a scientific rationale based upon cellular, experimental animal model, observational and clinical intervention studies for incorporating the combination of ω-3 fatty acids and tocotrienol-rich vitamin E as complementary nutritional therapies in children with neurodevelopmental disorders. Should this nutritional combination correct key clinical or biochemical outcomes and/or improve behavioral patterns, it would provide a safe, complementary option for these children.
    Nutrition 01/2013; 30(7-8). DOI:10.1016/j.nut.2013.11.001 · 3.05 Impact Factor
Show more