Article

Combined vaccination with HER-2 peptide followed by therapy with VEGF peptide mimics exerts effective anti-tumor and anti-angiogenic effects in vitro and in vivo

The Ohio State University
OncoImmunology (Impact Factor: 6.28). 10/2012; 1(7):1048-1060. DOI: 10.4161/onci.20708
Source: PubMed

ABSTRACT Overexpression of HER-2 and VEGF plays a key role in the development and metastasis of several human cancers. Many FDA-approved therapies targeting both HER-2 (Trastuzumab, Herceptin) and VEGF (Bevacizumab, Avastin) are expensive, have unacceptable toxicities and are often associated with the development of resistance. Here, we evaluate the dual antitumor effects of combining designed particular HER-2 peptide vaccine with VEGF peptide mimics. In vitro, HER-2 phosphorylation and antibody-dependent cellular toxicity were used to validate whether combining HER-2- and VEGF-targeting therapies would be effective. Moreover, a two-pronged approach was tested in vivo: (1) active immunotherapy with conformational HER-2 B-cell epitope vaccines and (2) anti-angiogenic therapy with a peptide structured to mimic VEGF. A transplantable BALB/c mouse model challenged with TUBO cells was used to test the effects of the HER-2 peptide vaccine combined with VEGF peptide mimics. Tumor sections after treatment were stained for blood vessel density and actively dividing cells. Our results show that immunization with an HER-2 peptide epitope elicits high affinity HER-2 native antibodies that are effective in inhibiting tumor growth in vivo, an effect that is enhanced by VEGF peptide mimics. We demonstrate that the combination of HER-2 and VEGF peptides induces potent anti-tumor and anti-angiogenic responses.

Full-text

Available from: Pravin T Kaumaya, May 24, 2015
0 Followers
 · 
83 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The insulin-like growth factor-1 receptor (IGF-1R) plays a crucial role in cellular growth, proliferation, transformation, and inhibition of apoptosis. A myriad of human cancer types have been shown to overexpress IGF-1R, including breast and pancreatic adenocarcinoma. IGF-1R signaling interferes with numerous receptor pathways, rendering tumor cells resistant to chemotherapy, anti-hormonal therapy, and epidermal growth factor receptor (EGFR, also known as HER-1) and v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2, (ERBB2, best known as HER-2) -targeted therapies. Targeting the IGF:IGF-1R axis with innovative peptide inhibitors and vaccine antibodies thus represents a promising therapeutic strategy to overcome drug resistance and to provide new avenues for individualized and combinatorial treatment strategies. In this study, we designed, synthesized, and characterized several B-cell epitopes from the IGF-1:IGF-1R axis. The chimeric peptide epitopes were highly immunogenic in outbred rabbits, eliciting high levels of peptide vaccine antibodies. The IGF-1R peptide antibodies and peptide mimics inhibited cell proliferation and receptor phosphorylation, induced apoptosis and antibody-dependent cellular cytotoxicity (ADCC), and significantly inhibited tumor growth in the transplantable BxPC-3 pancreatic and JIMT-1 breast cancer models. Our results showed that the peptides and antibodies targeting residues 56-81 and 233-251 are potential therapeutic and vaccine candidates for the treatment of IGF-1R-expressing cancers, including those that are resistant to the HER-2-targeted antibody, trastuzumab. Additionally, we found additive antitumor effects for the combination treatment of the IGF-1R 56-81 epitope with HER-1-418 and HER-2-597 epitopes. Treatment with the IGF-1R/HER-1 or IGF-1R/HER-2 combination inhibited proliferation, invasion, and receptor phosphorylation, and induced apoptosis and ADCC, to a greater degree than single agents.
    OncoImmunology 11/2014; 3(11):e956005. DOI:10.4161/21624011.2014.956005 · 6.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ten antiangiogenic drugs targeting VEGF or its receptors are approved for cancer treatment. However, these agents, intended to block tumors' blood supply, may cause hypoxia, which may fuel tumor progression and treatment resistance. Emerging clinical data suggest that patients whose tumor perfusion or oxygenation increases in response to these agents may actually survive longer. Hence, strategies aimed at alleviating tumor hypoxia while improving perfusion may enhance the outcome of radiotherapy, chemotherapy, and immunotherapy. Here I summarize lessons learned from preclinical and clinical studies over the past decade and propose strategies for improving antiangiogenic therapy outcomes for malignant and nonmalignant diseases. Copyright © 2014 Elsevier Inc. All rights reserved.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The human epidermal growth factor receptor 3 (HER-3/ErbB3) is a unique member of the human epidermal growth factor family of receptors, because it lacks intrinsic kinase activity and ability to heterodimerize with other members. HER-3 is frequently upregulated in cancers with epidermal growth factor receptor (EGFR/HER-1/ErbB1) or human epidermal growth factor receptor 2 (HER-2/ErBB2) overexpression, and targeting HER-3 may provide a route for overcoming resistance to agents that target EGFR or HER-2. We have previously developed vaccines and peptide mimics for HER-1, HER-2 and vascular endothelial growth factor (VEGF). In this study, we extend our studies by identifying and evaluating novel HER-3 peptide epitopes encompassing residues 99-122, 140-162, 237-269 and 461-479 of the HER-3 extracellular domain as putative B-cell epitopes for active immunotherapy against HER-3 positive cancers. We show that the HER-3 vaccine antibodies and HER-3 peptide mimics induced antitumor responses: inhibition of cancer cell proliferation, inhibition of receptor phosphorylation, induction of apoptosis and antibody dependent cellular cytotoxicity (ADCC). Two of the HER-3 epitopes 237-269 (domain II) and 461-479 (domain III) significantly inhibited growth of xenografts originating from both pancreatic (BxPC3) and breast (JIMT-1) cancers. Combined therapy of HER-3 (461-471) epitope with HER-2 (266-296), HER-2 (597-626), HER-1 (418-435) and insulin-like growth factor receptor type I (IGF-1R) (56-81) vaccine antibodies and peptide mimics show enhanced antitumor effects in breast and pancreatic cancer cells. This study establishes the hypothesis that combination immunotherapy targeting different signal transduction pathways can provide effective antitumor immunity and long-term control of HER-1 and HER-2 overexpressing cancers.
    OncoImmunology 11/2014; 3(11):e956012. DOI:10.4161/21624011.2014.956012 · 6.28 Impact Factor