DNA damage checkpoint triggers autophagy to regulate the initiation of anaphase

Department of Biology, Brandeis University, Волтам, Massachusetts, United States
Proceedings of the National Academy of Sciences (Impact Factor: 9.67). 11/2012; 110(1). DOI: 10.1073/pnas.1218065109
Source: PubMed


Budding yeast cells suffering a single unrepaired double-strand break (DSB) trigger the Mec1 (ATR)-dependent DNA damage response that causes them to arrest before anaphase for 12-15 h. Here we find that hyperactivation of the cytoplasm-to-vacuole (CVT) autophagy pathway causes the permanent G2/M arrest of cells with a single DSB that is reflected in the nuclear exclusion of both Esp1 and Pds1. Transient relocalization of Pds1 is also seen in wild-type cells lacking vacuolar protease activity after induction of a DSB. Arrest persists even as the DNA damage-dependent phosphorylation of Rad53 diminishes. Permanent arrest can be overcome by blocking autophagy, by deleting the vacuolar protease Prb1, or by driving Esp1 into the nucleus with a SV40 nuclear localization signal. Autophagy in response to DNA damage can be induced in three different ways: by deleting the Golgi-associated retrograde protein complex (GARP), by adding rapamycin, or by overexpression of a dominant ATG13-8SA mutation.

Download full-text


Available from: Vinay Eapen,
72 Reads
  • Source
    • "Analysis of DNA content demonstrated that rapamycin prevented adaptation even in the absence of autophagy (Figure 3C). Consistent with the notion that autophagy induction is not required to maintain Rad53 phosphorylation (Dotiwala et al., 2013), Rad53 dephosphorylation was still prevented by rapamycin in cdc13-1 atg5 cells (Figure 3D). Rapamycin impaired both Clb2 degradation and Sic1 accumulation in the presence and absence of autophagy when prolonged telomere dysfunction was induced (Figure 3D). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Cells challenged with DNA damage activate checkpoints to arrest the cell cycle and allow time for repair. Successful repair coupled to subsequent checkpoint inactivation is referred to as recovery. When DNA damage cannot be repaired, a choice between permanent arrest and cycling in the presence of damage (checkpoint adaptation) must be made. While permanent arrest jeopardizes future lineages, continued proliferation is associated with the risk of genome instability. We demonstrate that nutritional signaling through target of rapamycin complex 1 (TORC1) influences the outcome of this decision. Rapamycin-mediated TORC1 inhibition prevents checkpoint adaptation via both Cdc5 inactivation and autophagy induction. Preventing adaptation results in increased cell viability and hence proliferative potential. In accordance, the ability of rapamycin to increase longevity is dependent upon the DNA damage checkpoint. The crosstalk between TORC1 and the DNA damage checkpoint may have important implications in terms of therapeutic alternatives for diseases associated with genome instability.
    Cell Reports 09/2014; 9(1). DOI:10.1016/j.celrep.2014.08.053 · 8.36 Impact Factor
  • Source
    • "We also obtain data consistent with partial (but not exclusive) localization of PfATG8 to the apicoplast for control late trophozoites/early schizonts, by co – staining for apicoplast – specific PfACP protein (see Fig. S1). We note that the trophozoite (feeding) and schizont (nuclear division/parasite replication) stages of parasite development would be expected to utilize autophagy machinery in different ways [48], [49] and that further study of PfATG8 in trophozoites vs schizonts is warranted. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Resistance to the cytostatic activity of the antimalarial drug chloroquine (CQ) is becoming well understood, however, resistance to cytocidal effects of CQ is largely unexplored. We find that PfCRT mutations that almost fully recapitulate P. falciparum cytostatic CQ resistance (CQR(CS)) as quantified by CQ IC50 shift, account for only 10-20% of cytocidal CQR (CQR(CC)) as quantified by CQ LD50 shift. Quantitative trait loci (QTL) analysis of the progeny of a chloroquine sensitive (CQS; strain HB3)×chloroquine resistant (CQR; strain Dd2) genetic cross identifies distinct genetic architectures for CQR(CS) vs CQR(CC) phenotypes, including identification of novel interacting chromosomal loci that influence CQ LD50. Candidate genes in these loci are consistent with a role for autophagy in CQR(CC), leading us to directly examine the autophagy pathway in intraerythrocytic CQR parasites. Indirect immunofluorescence of RBC infected with synchronized CQS vs CQR trophozoite stage parasites reveals differences in the distribution of the autophagy marker protein PfATG8 coinciding with CQR(CC). Taken together, the data show that an unusual autophagy - like process is either activated or inhibited for intraerythrocytic trophozoite parasites at LD50 doses (but not IC50 doses) of CQ, that the pathway is altered in CQR P. falciparum, and that it may contribute along with mutations in PfCRT to confer the CQR(CC) phenotype.
    PLoS ONE 11/2013; 8(11):e79059. DOI:10.1371/journal.pone.0079059 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ability to survive stressful conditions is important for every living cell. Certain stresses not only affect the current well-being of cells but may also have far-reaching consequences. Uncurbed oxidative stress can cause DNA damage and decrease cell survival and/or increase mutation rates, and certain substances that generate oxidative damage in the cell mainly act on DNA. Radiomimetic zeocin causes oxidative damage in DNA, predominantly by inducing single- or double-strand breaks. Such lesions can lead to chromosomal rearrangements, especially in diploid cells, in which the two sets of chromosomes facilitate excessive and deleterious recombination. In a global screen for zeocin-oversensitive mutants, we selected 133 genes whose deletion reduces the survival of zeocin-treated diploid Saccharomyces cerevisiae cells. The screen revealed numerous genes associated with stress responses, DNA repair genes, cell cycle progression genes, and chromatin remodeling genes. Notably, the screen also demonstrated the involvement of the vesicular trafficking system in cellular protection against DNA damage. The analyses indicated the importance of vesicular system integrity in various pathways of cellular protection from zeocin-dependent damage, including detoxification and a direct or transitional role in genome maintenance processes that remains unclear. The data showed that deleting genes involved in vesicular trafficking may lead to Rad52 focus accumulation and changes in total DNA content or even cell ploidy alterations, and such deletions may preclude proper DNA repair after zeocin treatment. We postulate that functional vesicular transport is crucial for sustaining an integral genome. We believe that the identification of numerous new genes implicated in genome restoration after genotoxic oxidative stress combined with the detected link between vesicular trafficking and genome integrity will reveal novel molecular processes involved in genome stability in diploid cells.
    PLoS ONE 03/2015; 10(3):e0120702. DOI:10.1371/journal.pone.0120702 · 3.23 Impact Factor
Show more