Article

Unlocking mechanisms in interleukin-1β-induced changes in hippocampal neurogenesis—a role for GSK-3β and TLX

Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
Translational Psychiatry (Impact Factor: 4.36). 11/2012; 2(11):e194. DOI: 10.1038/tp.2012.117
Source: PubMed

ABSTRACT Glycogen synthase kinase-3β (GSK-3β) and the orphan nuclear receptor tailless homolog (TLX) are key regulators of hippocampal neurogenesis, which has been reported to be dysregulated in both neurodegenerative and psychiatric disorders. Inflammation is also implicated in the neuropathology of these disorders because of increased levels of the pro-inflammatory cytokine interleukin-1β (IL-1β) in the brain. At elevated levels, IL-1β signaling through the IL-1 receptor type 1 has been shown to be detrimental to hippocampal neurogenesis. TLX is required to maintain neural stem/progenitor cells (NSPCs) in an undifferentiated state and is involved in NSPC fate determination, while GSK-3β negatively regulates Wnt signaling, a vital pathway promoting neurogenesis. This study shows that GSK-3β inhibition using a small-molecule inhibitor and the mood stabilizer lithium restores the IL-1β-induced decrease in NSPC proliferation and neuronal differentiation of embryonic rat hippocampal NSPCs to control levels. The IL-1β-induced effect on NSPCs is paralleled by a decrease in TLX expression that can be prevented by GSK-3β inhibition. The present results suggest that GSK-3β ameliorates the anti-proliferative and pro-gliogenic effects of IL-1β, and that TLX is vulnerable to inflammatory insult. Strategies to reduce GSK-3β activity or to increase TLX expression may facilitate the restoration of hippocampal neurogenesis in neuroinflammatory conditions where neurogenesis is impaired.

0 Followers
 · 
83 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: To elucidate the molecular effects of lithium, we studied global gene expression changes induced by lithium in leukocytes from healthy subjects. Eight healthy male subjects participated in this study. Lithium was prescribed for weeks to reach a therapeutic serum concentration. Leukocyte counts and serum lithium concentrations were determined at baseline (before medication), after 1 and 2 weeks of medication and at 2 weeks after stopping medication. Gene expression profiling was performed at each time point using Agilent G4112F Whole Human Genome arrays (The Agilent Technologies, Santa Clara, CA, USA). Expression of some candidate genes was also assessed by real-time polymerase chain reaction (PCR). Gene ontology analysis revealed that the cellular and immune responses to stimulus and stress indeed played a major role in the cellular response to lithium treatment. Pathway analysis revealed that the interleukin 6 pathway, the inhibitor of differentiation pathway, and the methane metabolism pathway were regulated by lithium. Using real-time PCR, we also confirmed that five candidate genes in these pathways were significantly changed, including suppressor of cytokine signaling 3 and myeloperoxidase. Our investigation suggests that the molecular action of lithium is mediated in part by its effects on the cellular and immune response to stimulus and stress followed by the interleukin 6, inhibitor of differentiation, and methane metabolism pathways. Copyright © 2014 John Wiley & Sons, Ltd.
    Human Psychopharmacology Clinical and Experimental 03/2014; 29(2):190-8. DOI:10.1002/hup.2381 · 1.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The orphan nuclear receptor TLX, also known as NR2E1, is an essential regulator of neural stem cell (NSC) self-renewal, maintenance, and neurogenesis. In vertebrates, TLX is specifically localized to the neurogenic regions of the forebrain and retina throughout development and adulthood. TLX regulates the expression of genes involved in multiple pathways, such as the cell cycle, DNA replication, and cell adhesion. These roles are primarily performed through the transcriptional repression or activation of downstream target genes. Emerging evidence suggests the misregulation of TLX might play a role in the onset and progression of human neurological disorders making this factor an ideal therapeutic target. Here, we review the current understanding of TLX function, expression, regulation, and activity significant to NSC maintenance, adult neurogenesis, and brain plasticity. This article is part of a Special Issue entitled: Nuclear receptors in animal development.
    Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 06/2014; 1849(2). DOI:10.1016/j.bbagrm.2014.06.001 · 5.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Differentiation of neural progenitor cells (NPCs) is important for protecting neural cells and brain tissue during inflammation. Interleukin-1 beta (IL-1β) is the most common pro- inflammatory cytokine in brain inflammation, and increased IL-1β levels can decrease the proliferation of NPCs. We aimed to investigate whether agmatine (Agm), a primary polyamine that protects neural cells, could trigger differentiation of NPCs by activating IL-1β in vitro. The cortex of ICR mouse embryos (E14) was dissociated to culture NPCs. NPCs were stimulated by lipopolysaccharide (LPS). After 6 days, protein expression of stem cell markers and differentiation signal factors was confirmed by using western blot analysis. Also, immunocytochemistry was used to confirm the cell fate. Agm treatment activated NPC differentiation significantly more than in the control group, which was evident by the increased expression of a neuronal marker, MAP2, in the LPS-induced, Agm-treated group. Differentiation of LPS-induced, Agm-treated NPCs was regulated by the MAPK pathway and is thought to be related to IL-1β activation and decreased expression of TLX, a transcription factor that regulates NPC differentiation. Our results reveal that Agm can promote NPC differentiation to neural stem cells by modulating IL-1β expression under inflammatory condition, and they suggest that Agm may be a novel therapeutic strategy for neuroinflammatory diseases.
    12/2013; 22(4):268-76. DOI:10.5607/en.2013.22.4.268

Full-text (3 Sources)

Download
48 Downloads
Available from
May 20, 2014