Article

PANK2 and C19orf12 mutations are common causes of neurodegeneration with brain iron accumulation.

School of Biology, University College of Science, University of Tehran, Tehran, Iran.
Movement Disorders (Impact Factor: 5.63). 11/2012; DOI: 10.1002/mds.25271
Source: PubMed

ABSTRACT BACKGROUND: Neurodegeneration with brain iron accumulation (NBIA) constitutes a group of neurodegenerative disorders with pronounced iron deposition in the basal ganglia. PANK2 mutations are the most common cause of these disorders. C19orf12 was recently reported as another causative gene. We present phenotypic data and results of screening of PANK2 and C19orf12 in 11 unrelated Iranian NBIA patients. METHODS: Phenotypic data were obtained by neurologic examination, magnetic resonance imaging, and interviews. Mutation screening of PANK2 and C19orf12 was performed by sequencing. RESULTS: PANK2 and C19orf12 mutations were found in 7 and 4 patients, respectively. Phenotypic comparisons suggest that C19orf12 mutations as compared with PANK2 mutations result in a milder disease course. CONCLUSIONS: Mutations in both PANK2 and C19orf12 contributed significantly to NBIA in the Iranian patients. To the best of our knowledge, this is the first genetic analysis reported on a cohort of NBIA patients from the Middle East. © 2012 Movement Disorder Society.

0 Bookmarks
 · 
121 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neurodegeneration with brain iron accumulation (NBIA) comprises a group of brain iron deposition syndromes that lead to mixed extrapyramidal features and progressive dementia. Historically, there has not been a clearly identifiable molecular cause for many patients with clinical and radiologic features of NBIA. Recent discoveries have shown that mutations in C19orf12 or WDR45 can lead to NBIA. C19orf12 mutations are inherited in an autosomal recessive manner, and lead to a syndrome similar to that caused by mutations in PANK2 or PLA2G6. In contrast, WDR45 mutations lead to a distinct form of NBIA characterized by spasticity and intellectual disability in childhood followed by the subacute onset of dystonia-parkinsonism in adulthood. WDR45 mutations act in an X-linked dominant manner. Although the function of C19orf12 is largely unknown, WDR45 plays a key role in autophagy. Each of these new forms of NBIA thus leads to a distinct clinical syndrome, and together they implicate new cellular pathways in the pathogenesis of these disorders.
    Current Neurology and Neuroscience Reports 12/2013; 13(12):413. · 3.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pallido-pyramidal syndromes combine dystonia with or without parkinsonism and spasticity as part of a mixed neurodegenerative disorder. Several causative genes have been shown to lead to pallido-pyramidal syndromes, including FBXO7, ATP13A2, PLA2G6, PRKN and SPG11. Among these, ATP13A2 and PLA2G6 are inconsistently associated with brain iron deposition. Using homozygosity mapping and direct sequencing in a multiplex consanguineous Saudi Arabian family with a pallido-pyramidal syndrome, iron deposition and cerebellar atrophy, we identified a homozygous p.G53R mutation in C19orf12. Our findings add to the phenotypic spectrum associated with C19orf12 mutations.
    Gene 12/2013; · 2.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in the orphan gene C19orf12 were identified as a genetic cause in a subgroup of patients with NBIA, a neurodegenerative disorder characterized by deposits of iron in the basal ganglia. C19orf12 was shown to be localized in mitochondria, however, nothing is known about its activity and no functional link exists to the clinical phenotype of the patients. This situation led us to investigate the effects of C19orf12 down-regulation in the model organism Drosophila melanogaster. Two genes are present in D. melanogaster, which are orthologs of C19orf12, CG3740 and CG11671. Here we provide evidence that transgenic flies with impaired C19orf12 homologs reflect the neurodegenerative phenotype and represent a valid tool to further analyze the pathomechanism in C19orf12-associated NBIA.
    PLoS ONE 01/2014; 9(2):e89439. · 3.53 Impact Factor

Full-text

View
133 Downloads
Available from
May 21, 2014