Article

Response of Soil Microorganisms to As-Produced and Functionalized Single-Wall Carbon Nanotubes (SWNTs)

Environmental Science & Technology (Impact Factor: 5.48). 11/2012; 46(24). DOI: 10.1021/es303251r
Source: PubMed

ABSTRACT The use of single-wall carbon nanotubes (SWNTs) in manufacturing and biomedical applications is increasing at a rapid rate; however data on the effects of a potential environmental release of the materials remain sparse. In this study, soils with either low or high organic matter contents as well as pure cultures of E. coli are challenged with either raw As-Produced SWNTs (AP-SWNTs) or SWNTs functionalized with either polyethyleneglycol (PEG-SWNTs) or m-polyaminobenzene sulfonic acid (PABS-SWNTs). To mimic chronic exposure, the soil systems were challenged weekly for six weeks; microbial activities and community structures for both the prokaryote and eukaryote community were evaluated. Results show that repeated applications of AP-SWNTs can affect microbial community structures and induce minor changes in soil metabolic activity in the low organic matter systems. Toxicity of the three types of SWNTs was also assessed in liquid cultures using a bioluminescent E. coli-O157:H7 strain. Although decreases in light were detected in all treated samples, low light recovery following glucose addition in AP-SWNTs treatment and light absorption property of SWNTs particles suggest that AP-SWNTs suppressed metabolic activity of the E. coli, while the two functionalized SWNTs are less toxic. The metals released from the raw forms of SWNTs would not play a role in the effects seen in soil or the pure culture. We suggest that sorption to soil organic matter plays a controlling role in the soil microbiological responses to these nanomaterials.

1 Follower
 · 
95 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although carbon nanomaterials such as single-walled carbon nanotubes (SWCNT) are becoming increasingly prevalent in manufacturing, there is little knowledge on the environmental fate of these materials. Environmental degradation of SWCNT is hindered by their highly condensed aromatic structure as well as the size and aspect ratio, which prevents intracellular degradation and limits microbial decomposition to extracellular processes such as those catalyzed by oxidative enzymes. This study investigates the peroxidase and laccase enzymatic response of the saprotrophic white-rot fungi Trametes versicolor and Phlebia tremellosa when exposed to SWCNTs of different purity and surface chemistry under different growth conditions. Both unpurified, metal catalyst-rich SWCNT and purified, carboxylated SWCNTs promoted significant changes in the oxidative enzyme activity of the fungi while pristine SWCNT did not. These results suggest that functionalization of purified SWCNT is essential to up regulate enzymes that may be capable of decomposing CNT in the environment.
    Environmental Pollution 07/2014; 193C:197-204. DOI:10.1016/j.envpol.2014.06.013 · 3.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The impacts of carbon nanotubes (CNTs) including single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs) on soil microbial biomass and microbial community composition (especially on ammonium oxidizing microorganisms) have been evaluated. The first exposure of CNTs lowered the microbial biomass immediately, but the values recovered to the level of the control at the end of the experiment despite the repeated addition of CNTs. The abundance and diversity of ammonium-oxidizing archaea (AOA) were higher than that of ammonium-oxidizing bacteria (AOB) under the exposure of CNTs. The addition of CNTs decreased Shannon-Wiener diversity index of AOB and AOA. Two-way ANOVA analysis showed that CNTs had significant effects on the abundance and diversity of AOB and AOA. Dominant terminal restriction fragments (TRFs) of AOB exhibited a positive relationship with NH4(+), while AOA was on the contrary. It implied that AOB prefer for high-NH4(+) soils whereas AOA is favored in low NH4(+) soils in the CNT-contaminated soil. Copyright © 2014 Elsevier B.V. All rights reserved.
    Science of The Total Environment 10/2014; 505C:649-657. DOI:10.1016/j.scitotenv.2014.10.044 · 3.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rapid development and application of nanotechnology have introduced various nanopaticles, such as single-walled carbon nanotubes (SWCNTs), whose negative effects on aquatic organisms and cultured cells have been reported, into anaerobic wastewater treatment systems. In this study, the response of methanogenic sludge exposed to SWCNTs in anaerobic digestion process was investigated. Results show that SWCNTs, at a concentration up to 1000 mg/L, had no significant impact on the maximum methane yield. In contrast, they induced much faster substrate utilization and methane production rates. Scanning electron microscopy examination shows that more extracellular polymeric substances (EPS) were excreted from the anaerobic sludge and closely interacted with SWCNTs. Such an interaction prevented nanoparticles from piercing into cells, and thus reduced their cytotoxicity. In the compact anaerobic granule structure, SWCNTs exposure enhanced the electrical conductance of the sludge, which might promote direct interspecies electron transfer among anaerobic fermentative bacteria and methanogens in the anaerobic digestion process. Our results provide useful information to understand the response of anaerobic microorganisms to CNTs in complex environmental matrix. Copyright © 2014 Elsevier Ltd. All rights reserved.
    Water Research 12/2014; 70C:1-8. DOI:10.1016/j.watres.2014.11.042 · 5.32 Impact Factor