Neurobehavioral problems following low-level exposure to organophosphate pesticides: a systematic and meta-analytic review.

Research Department of Clinical, Educational and Health Psychology, University College London , Gower Street, London WC1E 6BT , UK.
Critical Reviews in Toxicology (Impact Factor: 6.25). 11/2012; DOI: 10.3109/10408444.2012.738645
Source: PubMed

ABSTRACT Meta-analysis was carried out to determine the neurotoxic effects of long-term exposure to low levels of organophosphates (OPs) in occupational settings. Concern about the effects of OPs on human health has been growing as they are increasingly used throughout the world for a variety of agricultural, industrial and domestic purposes. The neurotoxic effects of acute poisoning are well established but the possibility that low-level exposure causes ill health is controversial. It is important to get a clear answer to this question as more individuals are at risk of low-level exposure than acute poisoning. Although a number of reviews on this topic have been published in the past, authors have come to conflicting conclusions. To date, none of these reviews have attempted quantitative evaluation of study findings using meta-analysis. This paper reviews the available evidence concerning the neurotoxicity of low-level occupational exposure to OPs and goes on to report the results of a meta-analysis of 14 studies which fulfilled criteria for this type of statistical analysis (means and standard deviations of dependant variables reported). Data were assimilated from more than 1600 participants. The majority of well designed studies found a significant association between low-level exposure to OPs and impaired neurobehavioral function which is consistent, small to moderate in magnitude and concerned primarily with cognitive functions such as psychomotor speed, executive function, visuospatial ability, working and visual memory. Unresolved issues in the literature which should become the focus of further studies are highlighted and discussed.

  • Source
    Occupational and Environmental Medicine 12/2014; 72(2). DOI:10.1136/oemed-2014-102454 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Health effects of pesticides are easily diagnosed when acute poisonings occurs, nevertheless, consequences from chronic exposure can only be observed when neuropsychiatric, neurodegenerative or oncologic pathologies appear. Therefore, early monitoring of this type of exposure is especially relevant to avoid the consequences of pathologies previously described; especially concerning workers exposed to pesticides on the job. For acute organophosphate pesticides (OPP) exposure, two biomarkers have been validated: plasma cholinesterase (ChE) and acetylcholinesterase (AChE) from erythrocytes. These enzymes become inhibited when people are exposed to high doses of organophosphate pesticides, along with clear signs and symptoms of acute poisoning; therefore, they do not serve to identify risk from chronic exposure. This study aims to assess a novel biomarker that could reflect neuropsychological deterioration associated with long-term exposure to organophosphate pesticides via the enzyme acylpeptide-hydrolase (ACPH), which has been recently identified as a direct target of action for some organophosphate compounds. Three population groups were recruited during three years (2011-2013): Group I having no exposure to pesticides, which included people living in Chilean coastal areas far from farms (external control); Group II included those individuals living within the rural and farming area (internal control) but not occupationally exposed to pesticides; and Group III living in rural areas, employed in agricultural labour and having had direct contact with pesticides for more than five years. Blood samples to assess biomarkers were taken and neuropsychological evaluations carried out seasonally; in three time frames for the occupationally exposed group (before, during and after fumigation period); in two time frames for internal control group (before and during fumigation), and only once for the external controls. Neuropsychological evaluations considered cognitive functions, affectivity and psychomotor activity. The biomarkers measured included ChE, AChE and ACPH. Statistical analysis and mathematical modelling used both laboratory results and neuropsychological testing outcomes in order to assess whether ACPH would be acceptable as biomarker for chronic exposure to OPP. This study protocol has been implemented successfully during the time frames mentioned above for seasons 2011, 2012 and 2013-2014.
    BMC Public Health 02/2015; DOI:10.1186/s12889-015-1463-5 · 2.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The toxicity of the class of chemicals known as the organophosphates (OP) is most commonly attributed to the inhibition of the enzyme acetylcholinesterase. However, there is significant evidence that this mechanism may not account for all of the deleterious neurologic and neurobehavioral symptoms of OP exposure, especially those associated with levels that produce no overt signs of acute toxicity. In the study described here we evaluated the effects of the commonly used OP-pesticide, chlorpyrifos (CPF) on axonal transport in the brains of living rats using manganese (Mn(2+))-enhanced magnetic resonance imaging (MEMRI) of the optic nerve (ON) projections from the retina to the superior colliculus (SC). T1-weighted MEMRI scans were evaluated at 6 and 24h after intravitreal injection of Mn(2+). As a positive control for axonal transport deficits, initial studies were conducted with the tropolone alkaloid colchicine administered by intravitreal injection. In subsequent studies both single and repeated exposures to CPF were evaluated for effects on axonal transport using MEMRI. As expected, intravitreal injection of colchicine (2.5μg) produced a robust decrease in transport of Mn(2+) along the optic nerve (ON) and to the superior colliculus (SC) (as indicated by the reduced MEMRI contrast). A single subcutaneous (s.c.) injection of CPF (18.0mg/kg) was not associated with significant alterations in the transport of Mn(2+). Conversely, 14-days of repeated s.c. exposure to CPF (18.0mg/kg/day) was associated with decreased transport of Mn(2+) along the ONs and to the SC, an effect that was also present after a 30-day (CPF-free) washout period. These results indicate that repeated exposures to a commonly used pesticide, CPF can result in persistent alterations in axonal transport in the living mammalian brain. Given the fundamental importance of axonal transport to neuronal function, these observations may (at least in part) explain some of the long term neurological deficits that have been observed in humans who have been repeatedly exposed to doses of OPs not associated with acute toxicity. Copyright © 2015 Elsevier Inc. All rights reserved.
    NeuroToxicology 01/2015; 47. DOI:10.1016/j.neuro.2015.01.002 · 3.05 Impact Factor